ControllLogix Level 2

Data Manipulation

EthernetSupport.com

JJ

“Customizzd Auromarion Tralning

ControlLogix Level 2 — Page #1

ControlLogix Level 2 — Page #2

Copyright (c) 1999 Ricky Bryce.
Permission is granted to copy, distribute verbatim copies of this document,

commercially or non-commercially with no front cover texts, or back cover
texts. Changing this document is not allowed.

ControlLogix Level 2 — Page #3

13JANOS8

ControlLogix Level 2 — Page #4

Disclaimer:

This document is written in the hope that you can utilize for your own
education to gain knowledge of PLC systems (should you decide to utilize
this document) .

Although I believe the information in this document to be accurate, it is
YOUR responsibility to verify this information before implementing it in
any way, especially when damage to personnel or equipment could result.

By continuing to read this document, you agree to hold no one who writes,
modifies, or distributes this document liable in any way (even negligence).

Due to the wide variety of plant applications, some of the examples in this
document may be prohibited at your location, or could cause damage to
equipment, or harm personnel.

ControlLogix Level 2 — Page #5

About the Author:

This document is a collection of texts and graphics I've put together over
the past few years, and has been distributed under the GFDL since 1999.

I hope you get much use out of it, and I would like your feedback as to how
this document can be improved.

As a supplement to this document, I would like to invite you to my website
at http://www.LearnAutomation.com. TI'm in the process of uploading
documentation and videos that will further help you with problems or
questions you have with Allen Bradley processors.

"Human Knowledge Belongs to Everyone"

ControlLogix Level 2 — Page #6

Table of Contents

Questionnaire for Allen Bradley.........cooociiiioiiiiie e raa e 9
GLOSSATY ...ttt ettt ettt ettt et e et e et e e at e e bt e e ateeabeeeabeenbeeesteeab e e aeeen bt e esaeeabeenbee e e nbaeeeennbeaeennbaeeens 15
Understanding NUMDEIINGZ SYSTEIMS. ...cccuuiiiiuieiiiieeiiieeiieeesteeesteeestteessreessseeesseeesseeessseesssseesssseesssseesnnes 19
HAIAWATE ...ttt h ettt h et a e e e bt et e st e s bt e beesteebeenbe e bt e e saneeaa 22
DiSCIete INPUL IMOAUIES......c.vviieiiieciie ettt ebe e e st e e s sbeeesabeeesssaaaaeeeeesnssnaaeens 22
Discrete OULPUL MOAULES.........ooiiiiiieiieeiie ettt ettt e e ttesbeesaaeeebeessaesnbeesaeeenseens 23
ANALOZ IMOAUIES.......eiiieiiieciieeeee et e et e et e et e e etaeesaeeessbaeessseeessseeesnseeeasssasaeeeesnssssnaaeens 24
TRE CRASSIS. ...ttt ettt ettt et eb e b e et e s bt e bt e st e ebt e b e eabesb e e bt et e bt e nbe et s 25
THE PLIC-5 CRaSSIS. ..ueeiiieiieiiieette ettt ettt e h e et e bt e st e e bt e eabe e bt e eabe e e eabbeeesanbaeeeans 25

The SLC-500 CRaSSIS. .. .eeuerterieeieriienieetesitest ettt ettt ettt st ebesaeesbeebeestesbeestesaeeenbbeesnbeeeaeeens 25

The ControlLO@IX CRASSIS......uuiiiiieeiiieeitieeiieeeiieeestteeetaeesteeesteeesbeeessseeessseeessseeessseeesnssssseeeesannes 26

TRE FIEX CRASSIS..evtetteiieriieieeie ettt sttt ettt st sb et st e bt et satenaeentesbeenbeenaneens 26

THE POWET SUPPLY ...ttt e e e e et e e et e e sabae e saaeeessbeeessseeenssaaaaeseennssseeaeeeas 27
TRE PIOCESSOT ... ittt ettt ettt s bt e bt e et e e bt e s bt e st s bt e bt esbeeebteesabeeenbaeens 28
The Ethernet MOAULE.cocuoiiiie ettt ettt ettt eb e e ee e 31
Ethernet AdAIESSING........eevieuiieiieiie ettt ettt et e st e bt e et e e bt e ssbeesseeesseenseassseenseessseenseaeesseeennns 33
AQATESSING. ... eveeeetieeiee ettt e ettt e et e et e e et e e ssbeeessbee e sseeesseeanssaeasssaeessseeansseessseeeasseeeansanaaeens 33
SUDNEE MASK ...ttt et ettt et st e bttt e b ettt et e et e et e e 34
USING the HOSE F11@.....eeiiiiiiiieiie ettt e et e et e e e e e e saraeesnbeeeenseeeensaeeas 37
RISLITIX ettt et h et e h e bt et e a b e sb e et e st e e bt e bt ea b e she e bt e et e e h et e bt eenateeebeeen 40
Utilizing the BOOtP/DHCP SEIVET......ccuviiiiiiieiiie ettt et e et erae e sree e st eesnveeeensaeeas 40
Setting up the Ethernet DITVET........c.cooiiiiiiiiiiciieie ettt ettt et e e 44
Configuring the DEF T DIIVET......cccuiiiiiiiiiie ettt e et e e e e te e e e beeeebeeeenseeessseessnsnsaeaeseennes 47
Backup ReStOre ULIIILY.....ccouiieiiiiiiiiieiie ettt ettt st e s sbeestaesateesaeeensaeeeennseaennes 50
Flashing ControlLogixX MOAUIES..........ccecuiiiiiiiiiiieeciie ettt e e st e e sbee e s nsaae e e e e e e ennenes 52
Creating @ NEW PrOJECL.....cccviiiiiiiiieie ettt ettt et e s e et eeab e e bt e ssbeeateeesbeenseeeennbeaeeansaaeens 56
Setting up Local I[/O MOAUIES.........ccoviiiiiieeiieete ettt e eee e tae e ebee e s enenaeaeeeeennnnnes 57
WOTKING WIth TaZS....ccuviiiiiiiiieiie ettt ettt et ettt et e et e e teesbe e steesbeesaeenbeeseeenseanseesnsneeas 63
(0707012 70) | (S5 ol I T TSP USRS 63
PrOGIAM TAES. . eeeiiiiiiiieeitie ettt ettt e ettt e sttt e st e e s bt e e s bt e e eabeeesannbbeeeeeeeannbbeeeeeeas 65
ATTASINE. ...t eiee ettt et e e et e e sttt e e sttt e e tseeesaeeesaeeessseeeabaeeentaeeeabaeeenbeeeanteeeeannnaaaaeeeeannnrreaaaeans 71
REMOLE CRASSIS...cuveuteiietieie ittt ettt sa e bt et b et e st sh e et e eatesb e ebeeatesbeebeesbteenaneenas 73
BaSIC INSTIUCHIONS. ...ttt ettt et e s et e bt e s he e e bt e sbeeeabeesbeeenbeeeenbeeenans 86
EXAMINE I CLOSEA.euiiiiiiieiieiee ettt ettt sttt et e et esbae e 86
EXAMING I OPON...eiiiiiiiiiiiiiciie ettt ettt e e e st e e s ba e e saseeessseeeeessssaeaeeeeanssaeeeaeens 87
OULPUL TO ENETZIZE....c.eiieivieiiieiieeieeteeee ettt ettt ettt et e et e st e e beesabeesaeenbeeeassaeeeennseeeennes 87

L@ 01010 L K0T I 1] « U UURRRUUSPURR 88
OULPUL TO UNILALCH ...ttt et ettt e st e et esabeenseessbeensaeeenneee 88
TIIMIETS ettt ettt et e h e et e b e e a bt e bt e e a bt e bt e e hb e e bt e eae e e bt e eht e e bt e eht e e e b be e e eanbteeeenbbeeeaan 89
TIMEr ON DElay (TON)....c.eiiiiiiiieiieeit ettt ettt et e eb e et e steeaeeesbeenseeenbeeseesnseeseesnseesansseaans 90
TIMET Off DEIAY (TOF)...oiiiiiieiie ettt et e et e e e et e e saeeesaaeesaaesnssaeennsssaaaeens 91
Retentative On Delay Timer (RTO)......cooiiiiiiiiiiiieie ettt ettt sttt e seaestee s enaaeeens 92
COUNLETS. ..ttt ettt e ettt e e ab e e e a bt e e st e e e bt e e e bt e e e bt e e eabbeesabeeesabb e e s e asbbaeeeeeeeaanenee 93

ControlLogix Level 2 — Page #7

GSV COMMANG.....c.oiiiiiiiiiiie ettt 95

ON HNE EAItINE...ccoiiiiiiiiecieece ettt e ettt e et e e et e e sstaeessbaeessseeessseeessseeesseeesnssneaeesannnns 100
Start RUNG EdILS....cueiiiiiiie ettt ettt et e e bt e seeesbeesaeeenbeesssesaseennaeens 101
IMAKE CRANEZES. ... vveeeiiieeeiiieeeieeeetee et e et ee et e et e e eateeeestaeessseeessseeesssaeeasseeessaeenssaeanssaeansssneeeeennnssssens 102
ACCEPE BItS. ..ottt ettt ettt ettt e et e et e e e ntaeeeenbeeeeennees 103
TSt EUIES. .ttt ettt et et et e h e et e b et et e e bt e et e bt e e e earree s 104
ASSEMDIE EdItS...cuiiiiiiiiiieice ettt st 105

FOTCING I/ ittt et e et e ettt e ettt e et eesasaeessseeesaseeesnseeeasseeeanseeensssseaeeeannes 106

TSR TISTIUCTION. ¢ttt ettt ettt b et s bttt et e bt et et s bt e bt et e e sbteeeaaees 109

Introduction to FUNCtion BIOCKS..........coiiiiiiiiieciiece et e e e eeraee e e e e 113

Creating an Add-On INSEIUCHIONoouiiiiiiiiieiiieiie ettt ettt et s e e beesateeabeessaeenseeenneas 120

INAITECt AQATESSINE.viiieiiieeiiieeeiie ettt ettt e et e et e e et eeeteeeestaeesssaeessseeessseeeasseeessseeesnssnaaeesannnes 128

FAL INSTIUCHION ..ttiutiiitiiiieieete ettt ettt ettt et b ettt sb et eatenbe et e eaeesaeenteeaateeeaee 131

USEr DefINed Data TYPeS...cccuviieiiieeiiiieeiieeeiteeeiteeeteeeette et e esateeesaaeesaaeessseessaeesnsseesnsseesnsaeessnsssneeeesas 135
STMPIE UDT'S ettt et ettt e s it e e bt e sae et e e saeeesseessbeenseessteenseeeensbeeesansaeeens 136
INESEING UD TS .tieeiiie ettt ettt et e et e et e e e ateeetaeeeseeesnsseeassaeeasseeenssaeenssaesennsssneeeesannns 139

Producer/Consumer MOEL...........coouiiiiiiiiiiiiee ettt ettt e 142
THE PrOQUCEA Ta......eiiieiiieeiiieeiieeeee et et e e et e e st e e st e e saseeesnseaeeeeensssseaeeeennnnnseens 142
The CoNSUMEA TaG.......ccueiiiieiieiiieieee ettt et ettt et e e beesaeesabeesbeeeenseeesensaeeeennseeens 144

IMLESSAGINEG. .. eeeiuvieeeiiieeeiteeeiteeettee ettt e etteeestaeessseeessseeessseeeasseeesseeensseeensseesnsseesnsseesnsseesnsssaeeseesssssneaesennnns 152

TEEIAING. ...ttt ettt ettt et e s at e et e s aeeeabe e s st e enbeeesbeenbeeesbeenseeenbeenseeenbeenbeeeensaeeeennnes 164

PID Demonstration -- CONrOILOZIX.......cccueiiriieiiiieeiieeecieeeitee et eeieeesteeesaeeesaeeessaeeessseesnsnssaeaeeeannnns 172
TOIMINOLOZY ...eenveeeeieeiie ettt ettt ettt et e st e et e s et e eabeesabeenseessteenseeesbeenseeeennbeeeensaeens 172

Proportional GAIN.........cccuiiiiiiieciie ettt e et e e et e e st ee e e saeeesaseeessseeessseeeeesnnsssaaaeeeannnes 179
INte@ral WOTKSIEEL......c.eiiiiiiiieiiee ettt ettt e et e et e e e entaeeeensneeas 184
Derivative WOTKSREET.couiiiiiiiiee ettt et e 191

Structured Text (OPTIONAL)......cccuiiiiiiiieie ettt e e bt e st e bt e sebeebeesabeenbeeeenseeeenns 197

TTOUDIESNOOLING. ...ccevieiiiie ettt e et e e et e e e aeeesaseeesaeeessseeessseesnsseeaeeennsssseaeeeannes 200
SEATCH/FING. ...ttt ettt ettt et be ettt e bt et saeenbe e s 200
CrOSS REEIEINICE.eeneiiiiee ettt ettt et et e bt e st baee s 200
TIENAINE. ...ttt ettt ettt et e st e e bt e s ate e bt e ssbeenbeesaeeenseeasaeenseeeennbeeeensaeeeennneeas 200

Connecting to a Spreadsheet using DDE..........cccoooiiiiiiiiieee e e e e e 201

Using DDE With ViSual BaSiC 6......cc..ceouiiiiiiiiiiiiciieee ettt ettt et e e e esaeeeeeee 205
Acquiring Data from the PrOCESSOT......cuiiiiiiieiiie ettt ettt ee st e e sre e e sbee e e s snraneeeeeennnnnnes 205
Sending data to the PrOCESSOT.......c.uiiiiiriieiiieie ettt ettt ettt e seae st e et esbeesseesnbeesennaeeeens 207

ControlLogix Level 2 — Page #8

Name Date

Questionnaire for Allen Bradley

Automation Systems
1)What is the primary purpose you are attending this class?
2)Are you interested in programming, troubleshooting, or both?
3)What do you find most difficult about Allen Bradley PLC’s
4)How often do you access the Allen Bradley PLC? (once a day, once a week, once a month, etc?)
5)After taking this class, will you be putting your knowledge to use right away in the plant?
6)What type of equipment do you generally work with?

7)What types of networks are you using with your PLC system? Ie... Data Highway plus, controlnet,
devicenet, Ethernet, etc?

8)What is your company’s policy on forcing?
9)Do you generally have access to the Internet as you work?

10)Can you bring a copy of some plant programs into the classroom tomorrow?

ControlLogix Level 2 — Page #9

11)Will you ever be installing new systems, or checking new systems once they have been installed?

12)Will you ever be modifying the I/O structure of existing systems?

13)Do you have any common system failures that are related to the Allen Bradley PLC? If so, what are
these failures

14)Are you interested in learning features of RSLogix that are not currently in use by your plant, but, if
used could reduce downtime?

ControlLogix Level 2 — Page #10

Name Date Score

ControlLogix Level 2
Pre-Test

1) If the I/O light on the processor is flashing green, what does this indicate?

2) What does a solid red OK light on the processor indicate?

3) What is the difference between the controller tag database, and the program tag database?

4) How many Tasks can be set up in a controller?

5) How many of these tasks can execute continuously?

6) How many programs are allowed in a task?

7) What instruction must be placed in the MainRoutines so the SubRoutines will execute?

8) What programming languages are available in the ControlLogix system?

9) What is a user-defined data type, and how can they be used to organize the tag database?

ControlLogix Level 2 — Page #11

10)Diagnostic input modules can detect the difference between an open switch and a broke wire. How
is this possible?

11)What is a produced tag?

12)What is a consumed tag?

13)If the processor is in program mode, is the producer/consumer model still transferring data?

14)Block transfers to an analog module using the remote I/O protocol are handled using what
instruction in logic?

15)What has to be different about every device on Ethernet?

16)What protocol does the 1756-ENBT module use in order to communicate with ethernet I/O devices

such as Flex I/O and drives?

17)What is the difference between an ethernet hub and an ethernet switch?

ControlLogix Level 2 — Page #12

18)What software must be used to schedule connections on ControlNet?

19)What software is used to map devices on a DeviceNet network to memory locations in the
processor?

20)What is 'Electronic Keying'? Describe the 3 settings for electronic keying
1. Disable Keying:

2. Compatible Module:

3. Exact Match:

21)Although there is not currently a Custom Data Monitor for RSLogix 5000, what are some options
you have to monitor data in an organized manner?

22)When the 1756-ENBT module is brand new (out of the box), it has no IP address assigned. What
are some methods you can use to assign the module an IP address?

23)What software is used to flash the firmware in specialty modules such as the processor, ethernet
module, and devicenet module?

24)If a process is running, and is dependant on a PLC you are downloading to, what is most likely
going to happen to the process when your download starts?

25)What utility can be used in RSLinx to backup the current driver configuration?

ControlLogix Level 2 — Page #13

ControlLogix Level 2 — Page #14

Glossary

Addressing:
Bit: Smallest unit of information the PLC can process— ON or OFF

Word: 32 Bits for Double Integer

Hardware:
Input module: Reads the STATUS of field devices

Output module: CONTROLS field devices

Discrete module: Reads or controls devices which only have 2 states:
on or off

Analog Module: Reads or controls devices which have a range
such as 0 to 10 volts or 4 to 20 milliamps

Power Supply: Provides control power to modules on the backplane
Chassis: The physical device that modules are plugged into.
Local Chassis: The chassis where the processor resides.

Processor: The 'Brain' of the PLC which contains the machine program.

ControlLogix Level 2 — Page #15

Troubleshooting Tools:

Cross Referencing:
Allows the troubleshooter to quickly navigate through the
program by listing all locations in ladder logic where a
particular address is located.

Usually the troubleshooter will cross reference a false condition on a
rung of logic to find the output that will turn the referenced bit on.

You can Access Cross Referencing by right clicking a particular
address. (Note: You must be on the address, not the instruction)

Custom Data Monitor Utility:
Allows the troubleshooter to gather data from various
memory locations onto one screen for easy troubleshooting. For
example: One can create a custom data monitor for the failure of
a particular motor. Next time the motor fails, the troubleshooter
can simply look down the list of conditions that must be met, and
see in real time which condition is causing the failure.

The custom data monitor utility has to be installed as a separate tool.
Since the CDM utility is not built into RSLogix, you must have
RSLinx activated.

RSLinx Lite will not work with the CDM utility.

Force:
Simulates real world jumpers. Use care while performing a force.
You must understand fully how a force is going to affect your system.
In most cases, only addresses starting with an I: or an O: can be forced.

To force an input or output, you can right click on the address in logic,
then choose force on or force off. After the force is installed, forces
can then be enabled from the on line tool bar.

Trending:

Trending acts somewhat like a 'software chart recorder', and allows you
to track an analog signal over time.

ControlLogix Level 2 — Page #16

Communication terminology:

RSLinx: This is the communication server. If RSLinx is not set up properly,
RSLogix will not communicate to the processor.

Driver: Allows RSLinx to communicate with a particular hardware device. The
most common drivers are the DF1 driver to communicate with
Channel 0, and the PCMK driver for a laptop to communicate to
Channel 1A for station 5. Configure drivers by clicking
communication on the menu bar.

RSWho: A graphical screen which will display what devices RSLinx has
established communication with. Access RSWho by clicking
communication on the menu bar. Then click on the name of
the driver you wish to use for communication. The right hand
side of the screen will reveal devices the driver has communication
with.

RSLogix: The software which allows you to troubleshoot or program a processor.
Online: Actively communicating with the processor (ladder spinning)

Download: If a program was changed offline, it must be downloaded (
or sent to) the processor. When downloading the processor must
be in program or remote program mode. A good way to download
once RSLinx is properly set up is to click COMMS on the menu bar, and
then go to Who Active. Click the driver name, highlight your processor,
then click DOWNLOAD.

ControlLogix Level 2 — Page #17

Memory Layout:

Tags: A section of the processor's memory that stores information. You can
also think of tag elements as variables. For example: The
memory location “MainTorque” could store a drive torque value.

There are two scopes of tags: Program tags which are local to the
program they Reside in, and Controller Scoped tags which are
global. You can access the Program Tag database by double clicking
program tags just above the MainRoutine of each program.
Controller tags can by accessed at the top of the Controller organizer
window.

Tasks: A section of the processor's memory which holds programs.

Programs hold Routines. Each controller can have multiple tasks with multiple
programs in each task. Each of these programs can then have multiple routines.

Atomic Data Types:

BOOL 1-bit boolean 0 =cleared 1 =set

SINT 1-byte integer -128 to 127

INT 2-byte integer -32,768 to 32,767

DINT 4-byte integer -2,147,483,648 to 2,147,483,647

REAL 4-byte floating-point number -3.402823E38 to -1.1754944E-38

ControlLogix Level 2 — Page #18

Understanding Numbering Systems

Understanding numbering systems will help you to understand various ways in which data can be
monitored in the ControlLogix processor. For example, if you are reading the value of a limit switch,
you would want to change the numbering system (style) to binary. If you were viewing data from an
analog module, you would want to set the style for decimal. The PLC-5 modules are numbered in an
Octal addressing scheme, so if you read data from a PLC-5 module, you may want to set the style to

Octal.

Some devices such as LED displays are wired in Hex/BCD. The two most common styles for

most plants will be Binary and Decimal.

1)

2)

3)

4)

Binary — Binary is a base 2 numbering system. You only have two numbers available in
Binary, 0 and 1 for any position (ones, tens, hundreds, etc...). Binary is the most common style
for discrete I/O such as limit switches, pushbuttons, solenoids, and motor starters.

Decimal -- Decimal is a base 10 numbering system. Only 10 numbers exist in the Decimal
numbering scheme (0 to 9) for any given position. The Decimal style is used most often when
displaying analog data, such as a pressure or temperature.

Octal — Octal is a base 8 numbering system. In Octal, 8 numbers are available (0-7) for use in
any position. In older PLC's such as the PLC-2, and the PLC-5, The I/O modules were
numbered in the Octal addressing scheme. The Octal style can be used when connecting to one
of these older modules.

Hexadecimal/Binary Coded Decimal — Hex/BCD is a base 16 numbering system. 16 numbers
are available for any digital position (0 to 9 then A to F). Devices such as LED displays and
thumb wheels can be BCD Devices.

On the following chart, you will write down the decimal numbers 0 to 15, and the numeric conversions
for each of these numbering systems. This chart will help you understand topics covered later in the
course such as masking.

ControlLogix Level 2 — Page #19

Decimal

Binary

Octal

Hex/BCD

ControlLogix Level 2 — Page #20

ControlLogix Level 2 — Page #21

Hardware -- Discrete Input Modules

The purpose of the discrete input module is to read the status of field devices. When a voltage is
detected on the terminal of an input module with respect to common, the corresponding status light is
energized, and during the processor scan, the value of 1 is placed into the input data table. Examples of
input devices include switches, pushbuttons, or auxiliary contacts on a motor starter. The Removable
Terminal Block (RTB) can be detached from the module if the locking tab is pushed up. The enclosure
of the RTB will also slide off the terminal block for easy access to the terminals.

Please answer the following questions:

1) What is the catalog number of your DC Input module?
2) Name at least three field devices that can be connected to the DC Input module?
3) What do the status lights indicate on the front of the DC Input Module?

4) What is the slot number of the DC Input module at your station.

ControlLogix Level 2 — Page #22

Discrete Output Modules

The purpose of the discrete output module is to control field devices. The discrete output module
requires power from an external source. When a 1 is placed into the output tag of the ControlLogix (in
run mode), a status light is energized on the module, and a connection is made between the source, and
the corresponding output terminal. Examples of output devices include: lights, solenoids, motor starter
coils, and contactors. If you have an inductive load as the output, be sure to use the proper surge
suppression.

Please answer the following questions:

1) What is the catalog number of your DC Output module?

2) Name at least three field devices that can be connect to the DC Output module:

3) What do the status lights indicate on the DC Output module?

4) What is the slot number of the DC Output Module?

5) If the load on the DC output card is inductive, what should be done across the load to minimize the
effects of inductive kick?

ControlLogix Level 2 — Page #23

Analog Modules

Analog modules are used to control and read the status of analog devices. Analog devices have a range
of states instead of just on/off states like discrete devices.

Some analog modules have switches which determine whether the input channels are to be set up for
voltage or current. Some analog modules are configured through software.

Examples of analog inputs include: Potentiometer, Pressure Transducers, Variable speed drives, and
with a thermal couple module, temperature can be read into the processor's memory.

Examples of analog outputs include: Meters, Variable Speed Drives, Valve Positioners, and chart
recorders.

An analog signal cannot be expressed with a single bit, and therefore analog values will consume a
word of memory. For our class, we will use the Analog module on the Flex I/O chassis.

Please answer the following questions:

1) What is the catalog number of your analog module?

2) How many channels of Input, and how many channels of Output are available on this module?

3) How do you set up the input channels to accept either a current or a voltage input?

4) What range voltage or current will the Input channels accept on your module? What range of
voltage will the output channels accept?

5) Name at least three devices that are analog inputs:

6) Name at least three field devices that are analog outputs:

ControlLogix Level 2 — Page #24

The Chassis

The chassis is the device which holds modules. Allen Bradley makes the ControlLogix chassis
available in 4, 7, 10, 13, and 17 slots.

Here are some chassis:

The PLC-5 Chassis (With modules): (For dip switch settings on this chassis, refer to page 4-1 and 4-2
of the PLC-5 Quick Reference Guide.)

The SLC-500 Chassis (With modules):

ControlLogix Level 2 — Page #25

The ControlLogix Chassis (With Modules):

The Flex Chassis:

ControlLogix Level 2 — Page #26

The Power Supply

The power supply supplies power to the modules on the backplane. Generally power from field
devices DOES NOT come from the power supply. The power supply only provides control power to
modules on the backplane. Power for field devices come from a separate source which is connected to
the output module. The power supply merely provides the power needed to shut a contact, or fire a
triac or transistor to pass power from this external source to the field device. On the back of the power
supply, a jumper is used to set the voltage range.

Please answer the following questions:

1) Where does power come from to power field devices such as solenoids, lights, and motor starters?
2) What must be set up on a new power supply before it can be placed into service?
3) How many amps will your power supply provide to the backplane?

4) What is the catalog number of your power supply?

ControlLogix Level 2 — Page #27

The Processor

The processor is the main part of your ControlLogix system. The processor is where the program is
stored that reads the status of your equipment, and based on certain status, makes a decision on what to
control. For example: The processor is reading the status of a switch. When the operator energizes the
switch, the processor might call for solenoid to energize that extends a cylinder. When the cylinder
reaches the end of it's travel, it might close a limit switch. The processor will see that a limit switch has
been closed, and shut off the solenoid. Although traditionally the processor usually is placed in slot 0,
it can be placed anywhere in the chassis, as long as the program is setup for the processor to be in that
slot. You can also use as many processors as you like in a chassis (not to exceed the limitation of the

power supply)

The processor consists of several components:

1) The battery: The battery retains the processor's program when the PLC is powered down. Certain
AB documentation states that the shelf life of the battery is up to 2.5 years. When the battery is low,
you will see a BATT light on the front of the processor. A minor fault bit is also set in the memory
of the processor when the battery is low or missing.

2) On the front of the processor, you will find several status lights:

1. RUN - Indicates when when processor is in RUN Mode

2. OK - If flashing red, usually indicates a software problem. Go on line to get a description of the
fault. You will find the description in the Controller Properties on the FAULT tab. If the fault
light is solid red, this could indicate a hardware problem. You can try the following: re-seat the
processor, clear memory and reload program, or replace processor.

BATT-- Indicates the battery is low or missing

. 10 — If flashing indicates the Processor lost it's connection with at least one I/O device.

5. FORCE - If flashing indicates forces are installed but not enabled... If solid indicates forces are
installed, and enabled in the processor. This indicator is not available on all ControlLogix
processors.

6. RS232 — This light will flicker as data is transferred over the RS232 port (channel 0).

W

3) The Key Switch:

1. Run Mode: In this position, certain tag values can be modified, but ladder logic cannot. The
mode of the processor cannot be changed to program mode from the On line tool bar in RSLogix.
When the switch is in run mode, a program cannot be downloaded to the processor.

2. Program Mode: In this position, the ladder is not executing. Changes can be made to the ladder
diagram or to data files. The processor cannot be changed to run mode from the on line tool bar
in RSLogix while the switch is in this position.

3. Remote Mode: When the key switch is in Remote Mode, the mode of the processor can be
changed from RSLogix (Program or Run). On line editing is allowed.

ControlLogix Level 2 — Page #28

ControlLogix Level 2 — Page #29

The ControlLogix Processor:

ControlLogix Level 2 — Page #30

The Ethernet Module

Ethernet is a protocol that has been widely used for many years. Before Ethernet was used with PLC
systems, it was used in Office environments for sharing files, printers, data from databases, etc...
Ethernet is the fastest communication protocol available for the ControlLogix system with speeds up to
100 Mbps (Million bits per second). Ethernet can be used to communicate with the ControlLogix
system from a computer, for communication between controllers, to allow the controller to
communicate with I/O, Or MMI (man-machine interface) devices to communicate with processors.

Every device on Ethernet has a Unique hardware address which can usually be found on the device
itself, or on a configuration screen for the device. This hardware address can be used to issue the
Ethernet module an address using a bootP utility. The hardware address will also scroll across the
alphanumeric display if no IP address has been assigned.

uga

Once the IP address is assigned, the IP will scroll across the alphanumeric display. This IP address can
then be used in the Ethernet Driver for RSLinx, or if type the IP address into the address bar of a web
browser, such as Mozilla, the modules on board web server will show the module's status, and the
status of every other module in the chassis.

ControlLogix Level 2 — Page #31

On the bottom of the 1756-ENBT module, you will find an RJ-45 port. Using a standard patch cable,
you can connect the module to an Ethernet switch or a hub. To connect to your computer directly, you
will need a crossover cable (switches transmit and receive).

ControlLogix Level 2 — Page #32

Ethernet Addressing

Every device on the same Ethernet network must have a unique address. Allen Bradley PLC's
currently use the IP (Internet protocol) addressing scheme (version 4). This is the addressing scheme
discussed in this document.

Examples of Ethernet devices might be a Personal Computer (PC), a 1756-ENBT module, a 1794-
AENT flex adapter, a printer with built-in print server capabilities, and plant servers for data storage
and processing.

To see what the IP address is of your Windows NT, 2000, or XP machine type:
ipconfig /all
at the command prompt. Here is the result:

Ethernet adapter Local Area Connection:

Connection—specific DHE Suffix
Description 1% 7?88 PCI Fast
Physical Address B8-@D-8Y-83-F4-71
Dhcp Enabled Ho
122 .168_68.1681
Subnet Mask 255 26525508
Default Gateway 1?22_168_68.1
DNS Servers 12 127 1772
12.127_16.68

C:sJDocuments and Settingssrhryce

For Unix/Linux systems, the command /sbin/ifconfig will product similar results.
In this example, my PC has the IP address of 192.168.0.101. No other machine on the same network
will have this same IP address, nor should you attempt to assign the same address to another device on

the network. If this happens, one of the devices will not be seen.

Each segment of the IP address is called an OCTET. All IP addresses in the IPv4 addressing scheme
are made up of 4 octets. Each octet is an 8 bit unsigned integer.

ControlLogix Level 2 — Page #33

Subnet Mask

Notice the Subnet Mask: 255.255.255.0. The purpose of the subnet mask is to identify which part of
the IP address is the network address, and which part of the IP address is the host or terminal on the
network. To understand how the subnet mask works, it has to be broken down into a binary format...
Look at the IP address in Binary:

192.168.0.101

11000000 . 10101000 . 00000000 . 01100101

Now look at the subnet mask:

11111111, 11111111 & 11111111 . 00000000 = 255.255.255.0

Anywhere a | exists in the subnet mask, that bit of the IP address is viewed as the NETWORK part of
the address.... Lets see what bits are passed:

11000000 . 10101000 . 00000000 . 01100101 = 192.168.0.101
111111117 . 11111111 . 11111111 . 00000000 = 255.255.255.0
11000000 . 10101000 . 00000000 . don't pass = 192.168.0.X

Wherever there was a 1 in the subnet, we passed that bit of the IP address as part of the network
address. Therefore, we would say the network address for this machine is 192.168.0.X. Every device
on this network must have an IP address that starts with 192.168.0. and X is the terminal address on the
network.

For example: Devices with these two IP addresses can communicate with each other directly without
going through a router:

192.168.0.3 and 192.168.0.200 with subnet 255.255.255.0

These two devices cannot communicate with each other directly:

192.168.1.3 and 192.168.3.200 with subnet 255.255.255.0

However if the subnet mask was changed:

192.168.1.3 and 192.168.3.200 with subnet 255.255.0.0

These two devices will communicate with each other because the network address is only made up of

the first two octets, 192.168.X.X... since the network address is the same for the two devices, they will
communicate directly.

ControlLogix Level 2 — Page #34

Subnet Mask Exercise:
Indicate whether or not the following devices can communicate with each other directly:

1. 192.168.0.5 and 192.168.0.6 with subnet mask of 255.255.255.0 YES NO
2. 192.168.1.5 and 192.168.0.6 with subnet mask of 255.255.255.0 YES NO
3. 192.168.1.5 and 192.168.0.6 with subnet mask of 255.255.0.0 YES NO
4. 10.1.1.5 and 10.1.1.6 with subnet mask of 255.255.255.0 YES NO
5. 10.1.1.5 and 10.1.1.6 with subnet mask of 255.0.0.0 YES NO
6. 10.2.5.5 and 10.1.1.6 with subnet mask of 255.255.255.0 YES NO
7. 10.2.5.5 and 10.1.1.6 with subnet mask of 255.0.0.0 YES NO
8. 10.2.5.5 and 10.1.1.6 with subnet mask of 255.255.0.0 YES NO
9. 192.168.0.1 and 10.1.1.6 with subnet mask of 255.0.0.0 YES NO
10. 10.2.1.5 and 10.1.1.6 with subnet mask of 255.0.0.0 YES NO

ControlLogix Level 2 — Page #35

Other Terms:

GATEWAY
The gateway address is the IP address of a server or hardware router that connects you to other
networks such as the Internet.

DNS (Primary and Secondary)

The DNS server (Domain Name Server) resolves host names into IP addresses. When you enter an
address such as Yahoo.com into your web browser, your PC does not understand where to go. It must
ask the DNS server to look up the IP address of a given host names. Host names are for humans to
understand. Computers understand IP addresses.

DHCP

Dynamic Host Configuration Protocol — When a device such as a computer is configured to use DHCP,
A DHCP server should be available on the network. As soon as the device connects to the network, it
will ask the DHCP server to automatically assign an IP address, subnet mask, DNS servers, Gateway
address, etc. This address is dynamic, so the device could get a different IP address each time it's
connected.

BootP

Bootstrap Protocol — Similar to DHCP, except a BootP device will get the same IP address every time
it connects. The BootP server has a list of hardware addresses, and IP addresses that belong to each
device. When a device (such as a PLC) connects to the network, it will give the BootP server it's
hardware address. The server will then look up the hardware address in a list, and see which IP address
belongs to the PLC. The BootP server will then return the IP address (and other information such as
the subnet mask) to be used by the device.

ControlLogix Level 2 — Page #36

Using the Host file:

In the early days of the Internet (ARPA NET), there were no DNS servers to resolve friendly host
names into [P addresses. Everyone had a text file on their computer containing every host name
available, and the IP address for that host name. Eventually there were so many domain names, this
was too difficult to maintain. The host file still resides on your computer today, and still can be used to

resolve host names.

If DNS servers are not available on a network, you may want to use a HOST file to resolve friendly

names into IP addresses.

On Windows XP, the host file is at this location: C:\WINDOWS\system32\drivers\etc\hosts

For Linux/Unix machines: /etc/hosts

Here is an example of the host file. In this case, I added an entry for MyLinuxBox.

E hosts - Motepad

File Edit Format Wew Help

Copyright o) 1953-1599% microsoft Corp.

*

This i= a sample HOSTS file used by Microsoft TCPR,
#*

This file contains the mappings of IP addresses tt
entr¥ should be kept on an individual Tine. The IF
be placed in the first column followed bg the corr
The IP address and the host name should be separat
space.

*

Additiuna11¥, comments (such as thesel) may be inse
lines or following the machine name denoted by a
F

For example:

*

a 102.54.54, 57 rhino. acme. com # =0
38.25.63.10 ®.acme, Com
127.0.0.1 Tocalhost

1%2.1658.0.101 MylLinuxBox

After making the change, the configuration must be saved. (Click File | Save).

ControlLogix Level 2 — Page #37

From the command prompt, try to ping the friendly name:

C:xDocumentsz and Settingssrbryceping MyLinuxBox

Pinging MyLinuxBox [172.168.8.1611

Reply from 172.168.8.1081: hytes=32
Reply from 192.168.8.181: bhytes=32
Reply from 192.168.8.181: bhytes=32

Reply from 192.168.68.181: bytes=32

Ping statistics for 192.168.8.1081:

Packets: Sent = 4, BReceived = 4, Lost =

with 32 bhytes of data:

time<ims
time<ims
time<ims
time<ims

TTL=128
TTL=128
TTL=128
TTL=128

A <@+ loss>.

Approximate round trip times in milli-—seconds:
Minimum = Bmz,. Maximum = Bmz,. Average = Bms

C:sDocuments and Settingssrhrycer

Notice after pinging MyLinuxBox, the replies are reported as IP addresses. This host name can also be
used in the web browser's address bar if the device has a built in web server such as the 1756-ENBT

module.

ControlLogix Level 2 — Page #38

ControlLogix Level 2 — Page #39

RSLinx -- Utilizing the BootP/DHCP Server

1) Write down the Ethernet Hardware Address of the device you wish to configure. This is also called
the MAC address. Here is an example of a hardware address:
00:00:BC:1E:98:D9

2) Run the BootP/DHCP utility. You can access this utility if it is installed by clicking Start | Programs
(or All Programs in Windows XP)| Rockwell Software | BootP/DHICP Server | BootP DHCP Server.
b

(=R R AV 5% EOOTP-DHCP Help
b [ReLing QA 7Y BOOTP-DHCP Server
r @ R5Lim: Tools s
v [} RSLogixSEnglish *

3) Once the server is open, it may as for some specific network information if this is the first time the
BootP server has been run. You can obtain this information from your network administrator. For
this example, we just set the subnet mask to 255.255.255.0 then click OK.

4) Power up your processor, and you should see the Ethernet device begin to request and address.
— Request Hiztary

Clear Hiztory | Add bo Belation List

[hr:mir: e |T_I,I|:ue |Ethernet.ﬁ.ddress [FALC]

12:03:28 BOOTP 0O0:00:BCE:53:D3
12:03:26 BOOTP O0:O00BC:E:S2:D9

5) Double click on the device. You will then be prompted to assign an IP address to the device. Be
sure you double click the right device. Entering an IP address into the wrong equipment could have
disastrous consequences.

Ethernet &ddress [MALC]: II]I]:I]I]:EC:1E:HEZD9
IPAddress: | 192 . 168 . 0 . 72

Haostname: I

Description: I

] Cancel

ControlLogix Level 2 — Page #40

6) You could also enter a host name and description at this time if you wish.

7) If you wish to verify communication, you can ping the device from the command prompt. By
default, the command prompt can be accessed from Start | Programs | Accessories | Command
Prompt.

ommand Prompt

Microsoft Windows 2008 [Uersion 5.80.21951
(C> Copyright 1785-208B80 Microsoft Corp.

C:~Documents and Settings™Student>ping 122.168.08.72

Pinging 192_168_8.72 with 32 bhytes of data:

192.168.8.72: bytes=32 time<{18msz TTL=128
192 168 .8.72: bytes=32 time{1Bms TTL=255
192 168 .8.72: hytes=32 time<{dlBms TTL=255
Reply from 1922.168.8.72: bytes=32 time<{l@ms TTL=255

Fing statistics for 192.168.0.72:

Packets: Sent = 4. Received = 4, Lost = B (Bx loss>,.
Approximate round trip times in milli-—seconds:

Minimum = Bmz, Maximum = Bms,. Average = @ns

C:sDocuments and Settings™Studentr_

You should get replies. To ping continuously, use the -t flag after the ping command. A control-C
will stop the ping command.

ControlLogix Level 2 — Page #41

ControlLogix Level 2 — Page #42

ControlLogix Level 2 — Page #43

Setting up the Ethernet Driver in RSLinx

The Ethernet driver is used to make a connection to Ethernet Devices, such as an Ethernet PLC-5, or a
ControlLogix system. The following steps will walk you through a sample configuration of the
Ethernet driver in RSLinx.

1) Open RSLinx communication server

2) Click 'Communication' on the menu bar, and then choose 'Configure Drivers'.
‘T:E* RSLinx Gateway

File Edit ‘iew | Communications Station DDEJOPC
R3Swho
= &| £

[l configure Drivers. ..

3) From the Available driver types pull down menu, choose 'Ethernet Drives', then press the 'Add New'
button.

Awailable Driver Types:

/' jwﬁdd New... |

RS5-232 DF1 devi |

4) For this example, the name can be left at default. Press OK.
Add New RSLins Driver |

Chooze a name for the new driver.
[15 characters maximum)

J4E_ETH-1

ControlLogix Level 2 — Page #44

5) Populate the list of hostnames. If you do not have a way to resolve hostnames, you can enter the IP

address of the devices you wish to connect to (as shown below in the e

xample). The IP address for

each device can usually be obtained from the network administrator, drawings, the offline project, or

in some cases, the IP address is displayed on the front of the module.

Station Mapping I

1] 192168.0.95

1 192168.0.96

2 | 192.168.0.97 |
X Drriveer

6) Press Apply, then OK. You will see the driver is now running. Close
screen.

Station IHust Hame Add Mew |

Delete

the 'Configure Drivers'

—A&vailable Driver Types:
Ethernet devices j

— Configured Drivers:

Mame and Dezcription | Sta

bz

7) To test your drivers, click the RSWho icon in the tool bar of RSLinx.\

":,'2‘ RSLinx Gateway
File Edit Wew Communications Stakion

2| & S8 Bliz] 2

AB ETH-1 A-B Ethemet RUMMIMG Running

ControlLogix Level 2 — Page #45

8) Click the Ethernet Driver (the one you just configured) on the left side of the screen. The devices
you are communicating with will appear on the right. In this example, 192.168.0.95 is a
ControlLogix module, and the other devices are not present, or not a recognized PLC module.

Erswho - 1

vV Autcbrowse Browszing - node 192.168.0.95 faund
- workstation, YM7STARS
E?E Lir Gateways, Ethernet
G 8 ETH-1, Ethernet 192.168.0.95 192,168.0,96 192.168.0,97
1756-EMET/A Unrecogniz... Unrecogniz...

9) To go on line with a PLC, you must go to RSLogix at this point.

ControlLogix Level 2 — Page #46

Configuring the DF1 Driver in RSLinx

The DF1 Driver is used for point to point communication over RS232 between a COM port on a PC,
and the serial port (Channel 0) of a processor. The following steps will take you through a sample
configuration of the DF1 RS232 driver.

1) Open RSLinx Communication Server. If there is no short-cut on the desktop, you can access
RSLinx by clicking Start | Programs | Rockwell Software | RSLinx | RSLinx

RSLinx
Shorkout
1 kE

2) Click 'Communication' on the menu bar, then choose 'Configure Drivers'.

‘TQ* RSLinx Professional

File Edit 'u'iewll::nmmunicatinns Station DDEJSOPC
RSWhio
=] &| £

| Configure Drivers..,

3) From the Available Driver Types pull down menu, choose 'RS232 DF1 Devices', then press the
ADD NEW button.

Configure Drivers

Aeailable Driver Types:

R5-232 DF1 devices

Add Mew RSLinx Driver x|

Choose a name far the neww driver. 1

[15 characters maximum]

|4B_DF1-1 4”6”%'

ControlLogix Level 2 — Page #47

5) Although the communication parameters can be entered manually, if you are currently connected to
the processor, just hit the 'AutoConfigure' button. RSLinx will hit the processor with different baud
rates, and different settings, until it finds a setting it gets a response on. When this happens, you will
get a message that the autoconfiguration was successful. Press OK when finished.

Configure RS-23Z DF1 Devices

Device Mame: AB_DF1-1

Camm Port: IEDM‘I vI Device: ILDgi:-: ARR0 / CompactLogis j

Baud Frate: |1E|2EIEI ,,I Statiqn Murnber: I':"j
[Decimal]

F'arity:INnne "I Error Checking: |ECC -
Stop Bits:|1 *I Frotocal; IFuIIDupIEH *I

Auto-Configure Auto Configuration Successiul

[T Use Modem Dialer Carfigure Dialer |
'] Cancel | Delete | Help

6) You will see the driver is now running. Close the “Configure Drivers' screen.

—&wailable Driver Types: o
1 o I
|R5-232 DF1 devices | Add New... | |
Help
— Configured Dirivers:
Mame and Description | Statuz |
AB_DF1-1 DF1 Sta; 0 COMT: RUMKNING Hunning [Canfigure... |

ControlLogix Level 2 — Page #48

7) To test your drivers, click the RSWho icon in the tool bar of RSLinx.

*'Q‘- RSLinx Professional

File Edit Wiew Communications Stakion

8) Click the DF1 driver (the one you just configured) on the left side of your screen. The devices you
are communicating with will appear on the right.

IV Autobrowse s Erowszing - node 1 found

== workstation, STATIONS1

&g Linx Gateways, Ethernet

To go on line, you must go to RSLogix at this point.

ControlLogix Level 2 — Page #49

RSLinx Backup Restore Utility

The RSLinx Backup Restore Utility can be used to backup the current driver configuration of RSLinx,
or restore the configuration from a previous backup at an earlier time.

Backing up the current Configuration:

To access the Backup Restore Utility, click Start | Programs | Rockwell Software | RSLinx | Backup
Restore Utility.

2 RSLinx Backup/Re: o]

Backup

Festare

=N
[eten |

1) Click the 'Backup' button.
2) A dialog screen will appear asking where you want to save the backup file. Choose a location from
the pull down menu. If you are saving this to a floppy disk, choose the A drive. For this example,

the driver configuration will be saved to the C: Drive. You must also enter a file name, and then
press SAVE.

3 21x]
Save i IQ ki [C:] j = I-i:-i-g -
] 9324RL0OG00ENE_Firmware_Setup [hapedit]
I antmaker 3 Inetpub EE
|:| A0L Instant Messenger |:| map |:| f
| aclextras 3 Pl Flusic E3r
|_1Delorme Docs 3 pcnet EE R
D Documents and Sektings D PHFP D L
dl | -
File name: |M yBackup Save I
Save as lype: | Fisx Files [rsx) B Carcel |
A

3) You will then get a message that the operation completed successfully. Press OK, then you can
close the RSLinx Backup Restore Utility.

ControlLogix Level 2 — Page #50

Restoring a previous Configuration:

To access the Backup Restore Ultility, click Start | Programs | Rockwell Software | RSLinx | Backup
Restore Utility. Be aware that RSLinx must be shut down to perform this operation. If RSLinx is not
shut down, you will be prompted accordingly.

1) Click the 'Restore' button.

2) A dialog screen will appear asking where the backup file is stored at. Choose a location from the
pull down menu. If the backup file was on a floppy disk, you would choose the A: drive. For this
example, the backup is on the C: Drive. Click on the file you wish to restore from, the press 'Open'.

Look, in: IQ kain [C:] j = EF v
3 Program Files [tiki
| IRECYCLER COwInmT
_dRsI G wWiTemp
|:| R5Logix S000 . MyBEackup, 5%
| Swskem Yolume Information
_Itemp Type: RS¥ File
Size: 11.5kE
Kl [»]
File name: {MyBackup RS> | Open |
Filez of twpe: IHs:-: Files [*.rzx] j Cancel |
o

3) A dialog box should appear indicating that the operation was completed successfully. If you got an
error, try the restore procedure again. In some versions of RSLinx, BRU must be ran twice if
RSLinx was open.

ControlLogix Level 2 — Page #51

Flashing ControlLogix Modules

In order to flash ControlLogix firmware, you need to have the Control Flash utility installed. If it is not

installed on your PC, the installation program can probably be found on the same disk as RSLogix
5000.

In this example, we are going to flash a 1756- L1 processor.

1) Before starting, make sure necessary drivers are configured in RSLinx. If your drivers are not
configured in RSLinx, then restore from the appropriate backup file, or consult your
documentation on how to configure specific drivers to communicate with your equipment. To
open the Control Flash utility click START|[PROGRAMS|Flash Programming Tools|Control
Flash.

i, ControlFLASH - Untitled

ControlFILASH 3.18.00

“Welcome to ContralFLASH, the firmware
update tool. ControlFLASH needs the
following information from pou befare it can

. l beqin updating a device.
Lﬂntrﬂ 1.The Catalog Mumber of the target device.
2.The Metwork Configuration parameters
[optional].

3.The Metwark Path ta the target device.
4 The Firmware Revizion for thiz update.

Wi Log |

¢ Back | Mest » | Cancel

2) Be sure to read all instructions that are presented to you, and take all necessary precautions
while flashing a module. If your flash procedure is interrupted, you could damage the module.

ControlLogix Level 2 — Page #52

3) On the first screen, we are going to press the NEXT button.

Catalog Mumber

Enter the catalog number of the target device:

1756-CMB/D
1756-CHER/D
1756-L1
1756-L53
1756-L55
1786-M035E
17BEMO2AE
1763-L20
1763-L30
1734-L33
1794-L34

Control
FLASH'

< Back I et = I

Cancel

Help

4) Choose the device that you wish to flash. For this example, we will use the 1756-L1 option.
Then press NEXT. Now the ControlFlash utility will ask for the path of the device you wish to
flash. Drill down through RSLinx until you find the device you are wanting to flash. Highlight

the device, then press OK.

Select the 1756-L1 device bo update and click DK

¥ Autobrowse | Hefresh I

Mot Browszing

=1 wworkstation, HURRICANE

=l-&5 AB_ETH-1, Ethernet

01,
= oz,
..... 0,
-
..... 08,
=-f o8,

#-E5 Linx Gateways, Ethernet

=] 192.168.0.101, 1756-ENET)
=43 Backplane, 1756-410)4
20y 00, 1756-L1 14 LOGE:
; 1756-DNES, 17!
1756-CNE/A, 17"
1756-EMET /4
1756-DHRIOJE,
1756-I616/4, 17
1756-0B16E /A,
1756-L1 /4 LOGL:
1756-L1 /4 LOGL:

Channel 0 DF1

ControlLogix Level 2 — Page #53

5) Next you are asked what firmware version you want to flash the module to. In this case, the
module will be flashed to firmware version 10.23. If the processor's firmware was not the same
firmware that we needed, we would highlight the revision of firmware we want for this update,
and then press NEXT.

Firmware Revision

Catalog Humber: 1756-L1
Serial Mumber: 00101913
Current Revizion: 10.23

— Select the new revision for thiz update;

Fle'-.fisi...l R estrict... |
10.23

Show All

Bestrictions..

— Current Folder:

|-::"~|:|r|:|gram filezhcontro™1

oLk

< Back Cancel | Help |

6) Next you will receive a warning. Read the warning carefully. If you still wish to flash the
module, press FINISH.

D&MGER: The target module is about to be
update with new firmware. During the update the
rodule will be unable to perform ite nomal control
function. Pleaze make zure that all proceszes
affected by this equipment have been suspended
and that all zafety critical functions are not
affected. To abort this firmware update, press
Cancel now. To begin the update now, press
Firizh.

ControlLogix Level 2 — Page #54

The firmware update will now take place.

Catalog Mumber: 1756-L1
Serial Mumber: oonoata

Curent Revigion: 10023
Mew Bevizion: 10.23

Tranzmitting Block 474 of 922

There may be more than one stage in updating a module, so be sure not to interrupt the update process
until it is completely finished.

When the update is finished, you will see the following message:

Catalog Mumber: 1756-L1
Semial Murnber: 001071913

Current Revision: 10.23 Wiew Log |
Mew Rewizion: 10,23

- _ -

ControlLogix Level 2 — Page #55

Creating a new RSLogix 5000 Project

1) Open RSLogix 5000 — You may have a short cut on the desktop, or under Start | Programs |
Rockwell Software | RSLogix 5000 Enterprise Series | RSLogix 5000

2) Select “New Project”

I Start Page

Cy Quick Start

Recent Projects

M open Project

[E’ﬂ Mew Praject]

B open Sample Project

p Controller Projects

3) Next, we are going to set up a new processor. The image below is simply for example. You will
want to populate the fields according to the specifications of your own local system.

YWendar:

Type:

Allen-Eradley
| 175E-LE2 ContiollogixB562 Controller j

Fievizion:

M arne:

Description:

Chassziz Type:

Slat;

Create Ir:

[Redundancy Enabled

ISIag_H ernoval

Removes the slurry from the battonn of the baoiler.

I'I?EE-.-’-‘-.? 7-Slot ControlLogis Chazziz

b =

2 aftety Partnern Slok:

IE: YRS Logix S0004Projects

Browse...

J

ControlLogix Level 2 — Page #56

4) You have a valid project. It will not do much though because we have not configured any 1/O yet.
Let's take a moment to discuss some components of the RSLogix 5000 user interface.

Title Bar Fo RSLogik 5000 - Slaghenoval [LT56-L1] =] E3 I
Mer Dol s—t¢ Edt yew gearch Loge © Iock iEh
Stendard Toolkar e | Q| &| 08| | | -] &|%|%| [T

Onling Toolkar —0Hline 0. FRuN ? E Fath: I(n:nu:r

NoFi p_|F ok
o Forcas EI I—|I|jEIfE|I ‘|'|-|“1-|1:,"-|{-|j|-|-|:|:

= BaT
=i

N Editz

ll i I 3 I"qll sunries (B0 X TimerCounter & Inpuei

Instruction Toalbsa

i Contraler Tags
l-_-- Corkraler Fault
=3 Powser-Lip Hanc

£4 Tads

Caritrqller B ManTask |

CIYENITEL e— OB ManFragra

Wuinclo [Unscheduled P

=55 Mekion Groups

. I;T-:'ll-g'm.p:d Me -
| | »
Status Bar ——ah v

5) Next we will add the following modules to the I/O Configuration at the bottom of the controller

organizer window:
1. 1756-1B16 Version 2.5 Slot 5
2. 1745-OB16E Version 2.4 Slot 6

6) To do this, right click the backplane in the I/O Configuration folder of the project tree, and select

'New Module'.
ST
EI- 1756 Backplane, 17555

L iﬂ [0] 1756-L62 Slac Mew Maodule. ..

B Paste ChrlHy

ControlLogix Level 2 — Page #57

7) Expand the digital modules, and locate your 1756-1B16 module.

b odule |Descripti|:|n |"-.-"en-:||:|r |
- Analog ﬂ
-- Cammunications
-- Cantrollers

i L. 17EE-IALG 16 Point 79%-132% AC Inpuk Allen-Bradley
- 1 756-101 61 16 Paink 79%-132 AC Isolaked Inpuk Allen-Bradley
- 1756-1A3 216 32 Poink 74%-132% AC Input Allen-Bradley
- 1 75R-1AED0 & Poink 79%-132% AC Diagnoskic Input Allen-Bradley
£1756-1616 16 Poink 10%-3 Allen-EBradley
- 1756-1B160 16 Point 10%-30% D Diagnoskic Input Allen-Bradley

8) The module is version 2.5, so the Major revision is 2, and the minor revision is 5. Click OK on the

Major revision dialog box if your revision is correct.

Select Major Revision | x| |

Select Major Rev for 1756-[B16 Module Profile
being Created:

Major Revision: |2 j

Cancel | Help

ControlLogix Level 2 — Page #58

9) Complete the module properties dialog box as follows, then click 'Finish'.

New Module

Type: 175E-1B16 16 Point 100-31. 2% DIC | nput
Yendar: Allen-Bradley
Farent: Local
Mame: ﬂ;ncal Inputs) Slat: =
D'ezcription: I ;I
=l

Comm Farmat; Ilnput D ata

Rewvizion: |2_ 1 _:I Electronic Keying: | Compatible Keyping

@EI pen Module Properties] I Canicel

Help

10)You will notice the 1756-IB16 module appears in the I/O Configuration folder. Next, we will add

the 1756-OBI16E. Right click the backplane in the I/O Configuration folder, and select 'New

Module'.

E‘S 1} Configuration

=8 = 1756 Backplane, 1756 | |_
49 [0] 1756-L62 Slag_tﬁ New Modue..)

...... B [5]1756-1616 Locs B Paste

Chrl4-Y

11)Choose the 1756-OB16E card from the digital modules list, then press OK.

ControlLogix Level 2 — Page #59

b odule |Desu:riptiu:un |"-.r"en|:||:|r |
- 1 756-CAT 8 Poink 74Y-268% AC Cukput Allen-Bradley ;l
- 1 756-0A30 8 Point 74Y-132% AC Diagnostic Output Allen-Bradley
- 1 756-0A3E 8 Poink 74Y-132W AC Electronically Fused Oukpuk Allen-Bradley
- 1756-0B16D 16 Point 19.2%-30% DnZ Diagnoskic Cukpuk Allen-Bradley
B 1/56-0B16E 16 Paink 10%-31, 2% DiZ Electronically Fused Oukpuk Allen-Bradley
- 1 756-0B161 16 Point 10%-30% DC Isolabed Oukpuk, Sinkf/Source Allen-Eradley

12)Since the module is version 2.4, choose 2 as the major revision.

Select Major Revision |

Select Major Rev for 1756-0B16E Module Praofile
being Created:

M ajor Revision: |2 j

Cancel | Help |

13)Complete the module properties dialog as shown, then press 'Finish'.

Type: 1786-0B16E 16 Paoint 10%-31. 2 DT Electronically Fused Qutput
Wendaor: Aller-Eradley
Parent: Local
M arme; ILDI:aI_EIutputs Slat: IE _lj
Dezcription: I ;I
=l
Camm Farmat; IEST Timestamped Fuse Data - Qutput Data j

Rewvizion: IE_ I _Ij Electronic Keving: | Compatible Module j

ControlLogix Level 2 — Page #60

14)Y ou will notice both modules are now in the I/O Configuration tree. Be sure to adjust this
procedure to suit the modules you are actually using with your own system.

=-E5 I Configuration
=83 1756 Backplane, 1756-47
[[0] 1756-L62 Slag_Removal
o fl [5]1756-1B16 Local_Inputs
[6] 1756-0B16E Local_Cutputs

15)You are ready to download. Since the communication path has not been selected yet, let's click
Communications | WhoActive From the menu bar

& RSLogix 5000 - SlagRemoval [1756-L1]
File Edit W%iew Search Logic | Communications Tools Window Help

ElEI=INE] gg||i|£a Who Active

Select Recent Path,.,

5) Choose the path to your processor, and download.

Note: When no path has been developed, a 4 step procedure can be used to download to the
processor. Make note of this page. If your download fails because a path is needed, follow these 4
steps.

A) Click Communications | Who Active

B) Browse to your PROCESSOR

C) Highlight your PROCESSOR

D) Click Download, Upload, or Go Online. In this particular case, we want to download.

You CANNOT download to any module in this case, except for the processor. The processor is the
module which stores the PLC program. If your function buttons are gray (in such a way that you
cannot click the button), chances are that you do not have the processor highlighted.

ControlLogix Level 2 — Page #61

ControlLogix Level 2 — Page #62

Working With Tags

Tags are variables that your program reads and manipulates. There are two types of Tags: Controller
tags, and Program tags.

Controller tags are GLOBAL, which means that any program or any controller can read or write to the
tag. Program tags are LOCAL to the program they reside in.

Controller Tags:
If one program needs to communicate with another program, you would use a Controller Tag that each
program can read from or write to. For this example, lets say a conveyor has three segments. Each

segment has it's own program. When an E-Stop button is pressed, we would want all sections to shut
down. Therefore the ESTOP would be a GLOBAL tag.

Look at the following example:

[Controller Tags

Section 1 Section 2 Section 3

Tage Tags Tags

Control W

Each program has it's own tag database, that no other program can access, but if a program writes a
value to a Controller Tag, any program can access the tag.

For this example, I've created a new project called conveyor with an input module in slot 5 and an
output module in slot 6.

ControlLogix Level 2 — Page #63

Open the Controller Tag Database, and be sure 'Edit Tags' is selected. Declare the tag called
Estop_Condition, with a BOOL data type. The BOOL data type means one bit of information is to be
stored. This is similar to a B3 bit in a PLC or SLC. Press enter.

Controller conwesvar
[1 Cantraller Faulk Har

- [0 Power-Up Handler

=-£5 Tasks

- E58 MainTask

-
1 | »

.

Soope: In::n:nn'-.feyn:nr[n::n:nntn:nller] | Shgw |Show Al

F | Tag Mame & |Baze Tag | Type
'IEStDp_EDnditiDn | 0L
il |

4| v [y Monitor Tags -

ControlLogix Level 2 — Page #64

Program Tags

Program tags are local to the program they reside in. One main advantage of program tags is that we
can create one program and copy it multiple times. The exact same program tags can be used in each
instance of the program. This makes the process of building logic for similar pieces of equipment very
simple.

1) Right click on the main program and choose 'Properties’ Rename MainProgram to

Conveyor_ Control.
Bl Program Properties - Conveyor_Control !E

General I Configuration I

M arne:

El % ||:§J Mew Program... |

~o[0 Umsche ¥ cu Chri+

3) Expand Section 1 and open the Program Tags. Notice there are no tags in the program tag database.
At the bottom of the tag editor screen, be sure 'Edit Tags' is selected.

Program Tags - Section_1

Soope: ISectinn_1 j Show: |5h-:|w &l | son I
Tag Mame & | Aliaz For Basze Tag Typ

*
4 | r |\ Maonitor Tags ,’{I_Edit Tags]' HLL

ControlLogix Level 2 — Page #65

4) Set up three program tags as shown. Pay attention to the Data Type. The data type of the tag
specifies the way the data is structured within the tag. A BOOL data type will store 1 bit of
information, and a DINT (Double Integer) data type will store 32 bits of information (This is usually
used for numbers)

Program Tags - Section_1
Scope: ISec:tin:nn_1 > Shaw |Show Al | son ITag Mare 'I
Tag Mame & | dliaz For Baze Tag Type Shyle
Section_Running BOOL Decimal
Section_Fault BOOL Decimal
[F-Motor_Speed DIMT Decimal
*
4 | L4 I\ Monitor Tags }gEdit Tags f || 4 |

5) Now, let's add some logic: Right click the Section 1 program and add a new routine.

EIB Tasks

E% MainTask
Cﬁ: Carveyat Mew Routine. .
Ela Lo s

F'ru:ur $ Cut
7) The name will be MainRoutine, then press OK.

Mew Routine |

I arne; IM ainfoutine
Dezcrption: ;I Cancel |

Type: Ladder Diagram j

I Progran: ISE::tiu:unj j Help |

ControlLogix Level 2 — Page #66

8) We named this the MainRoutine, but did not configure it as the MainRoutine yet. Every program
needs to have a main routine. That is the routine the processor scans within the program. You will
notice in the controller organizer window, there is no 1 on the ladder icon yet. Right click the
Section_1 program and go to properties. Click the Configuration tab. In the Pull down menu next
to Main, choose the MainRoutine. Apply your changes, then press OK.

Bl Program Propetties - Section_1 !E[E
General Eunfiguratinn”l

Azzigned Foutines:

G ET |4 5inF outine

Fault: I Jr— j

9) Notice the MainRoutine is now has a 1 on it...

=450 Tasks (=4 Tasks
i El J-_%_ MainTask E| % MainTask
' G- #-% Conweyor_Contral l #-% Corweyor_Cantral
=28 Section_1 - % Section_1
;--&ngram Tangs E - !% Program Tags
PinFoukine ainF.oukine
Before After

10)Open the MainRoutine, and add the following logic using the drag and drop method:
= &
| Ar | []2 ﬂ

3it Tlmerbqunter A InputJ'Oulgut A Compare

= EEEN
R ———

ControlLogix Level 2 — Page #67

11)The question marks indicate that we need an address on each instruction. Double click the question
mark on the XIC,and click the pull down tab.

12)Be sure Controller Tags is selected. Expand Local:5:1, and click the pull down tab next to data to
reveal all 32 bits. Choose bit 0.

& I ocal 5l Data - I ?
& .. - __
= Tag Mame: |Data Type |D =
® | fS)Locals AE1736. ..
CiIMT

w [[INT

AE1TSE. .
B 1756,

16[17|18|19|20|21|22|23 ABATSE... [4)

24(25|26|27 (25| 293031

|

Program Scoped T agz

13)For the XI0, choose the ESTOP Tag.

: Local5il Data0 || stop_Condtion = | ? | 4 .
1E e - e

= It Tag Mame Data Type (Des

& Eztop_Condition BOoL
[[-Local s AR1TSE..
[H]-Local S AR17a6E..
[[-LocalE:C AR1TSE..
[H]-Local & AR17a6E..
[]-Local B D AR1TSE..

| Contraller Scoped Tags
Program Scoped Tagz |

14)For the OTE, Choose 'Section Running' as a Program scoped tag.

Estop_Condition I Section_F I:I |

Tag Mame |Data Type |Des
Motor_Speed DIWT
Section_Fault B0l

Section_Running Bl

Controller Scoped T ags |

| Program Scoped Tags

ControlLogix Level 2 — Page #68

15.Now that we have one complete program (Or as complete as we need it for example... Let's copy the
program and use it for other sections of the conveyor.

16)Right click the Section_1 program and choose 'Copy'. Right click on the '"MainTask' and choose
paste. Then right click the 'MainTask' again, and paste a second time.
=145 Tasks

EI% MainTask

i Eﬂ; Corvveyor_Conkral

E| ’% Section_1

: b 1 Program Tags

fh MainRoutine
EBE-¥cection 1723
7 Unscheduled Programs

17)This gave us a total of 3 copies of the same program. Right click on Section 11, go to the
properties, and rename it to Section_2. Right click Section 2, go to properties, and rename to
Section_3. When finished, your project will look like this:

=15 Tasks

=43 MainTask

i Eﬂ; Corvveyor_Contral
El @ Seckion_1

o F" Program Tags

PR Eﬁ MainF.outine
I Eﬂ; Sectu:un 2

18)Now all we have to do is go back and change the I/O in each program to reflect the actual switch
that turns on the conveyor for that section, and if we had it set up... The output the logic writes to.
All the internal bits are already written for us, and the program structure is in place.

ControlLogix Level 2 — Page #69

ControlLogix Level 2 — Page #70

Aliasing

This process can be taken one step further. The program can be set up so nothing has to be changed in
logic have to be changed after it has been copied. Aliasing allows this to be done. An Alias is a tag
that is a shortcut to another tag. We can create program tags in the program tag database that point to
the real world I/O. After a program has been copied, you just need to go into the program tag database,
and change the address the aliases point to. Look at this example.

1) Open the program tags of Section 1. Be sure 'Edit Tags' is selected and create a tag called 'Start'. In
the Alias for column, make this tag alias for Local:5:1.Data.0.

Scope: I Sechion_1

j Shgw: ISI"II:IW All

LI Sort: IE

Tag Mame

& | lias For

Baze Tag

Type

Section_Running

BOOL

Section_Fault

EOOL

[#]-Mator_Speed

DIMT

Start

Local:5:l.Data 0[C]

Local:%:0.Data,.. | BOOL

*

Notice the C next to the Input module's address. This means that you are pointing to a controller tag.

2) Now go back to the MainRoutine, and change the address on the first instruction to the alias name.
Notice by default the actual memory location the alias is pointing to appears below the alias name.

=Local s Data 0= Estop_Condition

Section_Running ‘

Pt

M @ @ @

L
‘ 1L

==
=

-
-r ‘

3) Now copy section on and paste it twice again into the main task. That will give us sections 11 and

12.

LE Section_3
Eg_‘ Section_11
Eﬂ; Section_12

3 Unscheduled Programs

ControlLogix Level 2 — Page #71

4) Go into section 11, and change the Start alias to point to bit 11 of the input module.

Tag Mame o

Aliaz For

Baze Tag |

[*#-totor_Speed

Section_Fault

Section_Running

Start

Local5:1.0ata 11[C] |Local:5:l.Data 11(C)

5) Do the same for section 12. Change the start tag to look at bit 12 of the input module.

6) When bit 11 goes high on the input module, Conveyor 11's start bit will be energized. When Bit 12
goes high on the input module, Conveyor 12's start bit will energize! You can see how aliasing
would allow you to quickly develop programs that are very similar.

A Controller tag can be an alias for another controller tag. A program tag can alias another program
tag. A program tag can alias a controller tag, but a controller tag CANNOT alias a program tag.

You can alias to several tag levels. The start tag you just created pointed to a bit level tag. But if it
would have pointed to the data word instead, we would have to specify the bit number manually in

logic. Look at the chart below:

If the name iz aliaz for
the displayed part of
the address

Then Switch 0's
Addrezz in logic
svould ook like this:

Switch
Locals:l Data 0

Swiitch

Switch
Local Sl Data 0

Switch.0

Switch
Locala | Data 0

Swittch Data 0

ControlLogix Level 2 — Page #72

Remote Chassis

In many systems, many points of I/O are located far away from the local chassis. The local chassis is
the chassis where the processor in focus resides. In many cases, it is easier to mount a chassis at the
remote location. A communication cable will allow the processor to control the chassis at the remote
location. For example, if 256 points of I/O were 300 feet from the local chassis, it would be easier to
mount a chassis at the remote location. You would then run the 256 points of I/O just a few feet to the
remote chassis, then run one communication cable back to the local chassis.

The example below shows the Ethernet/IP communication protocol, however, many other protocols
follow the same model such as ControlNet or Remote I/O with slightly different wiring and
configuration changes.

Look at the diagram below. In this example, we have an input and output module in the local chassis.
This would be for I/O in the local vicinity. For I/O in another location, we can use a remote chassis.
The processor will establish a connection to this remote I/0, and will read inputs, and control outputs
on this chassis. In this example, the local chassis is ControlLogix, and the remote chassis is FLEX /O
(This could also be many other types of chassis such as another ControlLogix chassis, PLC-5 Chassis,
SLC Chassis, Block I/O, etc....). This procedure will assume that you have an existing program, and
that IP addresses have already been assigned to the Ethernet module, and Ethernet Adapter. If you
were to use ControlNet, you would assign node numbers instead of IP addresses. You can assign node
numbers to these modules by physically dialing in a node number on the modules themselves. For
Remote 1/0, you would set up the DIP switches according to the user manuals for each module.

Local Chassis

Proceszor
Ethernet
Mociule
Input
hociule
Ottput
Mociule

Femote Chassis

PR L
S22 |83 |23
=8 g5 o | c S
=T |52 |0= |4%

Ethernet Sweitch

1794-AEMT Module
Address: 192.168.0.26

ControlLogix Level 2 — Page #73

Communication path

Look at the diagram below showing the communication path. The processor is where the program
resides, so the path we choose will be relative to the processor itself.

1) The processor must first connect to the 1756-ENBT module in the local chassis. If you
are using ControlNet, this would be a 1756-CNB(R) module. For the older remote I/O
Protocol, this would be a 1756-DHRIO module.

2) Next, we must tell the local 1756-ENBT module to connect to the adapter at the remote
chassis. Remember we are using Flex I/O for this particular example, so we would
connect to the 1794-AENT module (Ethernet) 1794-ACN(R)(ControlNet), or 1794-ASB
(Remote I/O).

3) The next step is to have the adapter connect to the individual modules within it's chassis.
We are using the following modules:
1. Slot 0 — 1794-IB16 (DC input module)
2. Slot 1 —1794-OB16 (DC output module)
3. Slot 2 — 1794-1E8 (Analog input module)

Local Chassis

[
5 Step1 | 4,
{ c3
g 23
& ’EE
I
Step 2 Remote Chassis
=
E -"]-:'.E i EE o b
= cEe |52 |22 |22
o k=] = [
g §3|£2 (32 (a2
[
j
i

\

Step 3

ControlLogix Level 2 — Page #74

I/O0 Configuration

Now that we have decided the layout for our system, we need to go to the ControlLogix project, and set
up the remote chassis under I/O Configuration. Recall that 3 steps will accomplish this connection:
First, we connect to the Local ENBT module, then the ENBT will connect to the AENT. Next, the

AENT will connect to the modules that are in it's own chassis.

1) If you do not already have the Ethernet module set up in your I/O Configuration, right click the

backplane of the I/O Configuration folder, and select New Module'.

EI'S I} Configuration
=R = F175A Backplane, 1756~
0 [0] 1756-LeZ SIag_rElﬂ Hew Moduls.] |

] 5] 17561816 Local g

Zhr-

2) Inthe Communication category, select the 1756-ENBT module.

x
bl oduile |Desu:riptiu:un |‘-.-’en|:||:|r |
-~ 1756-EMZFIA 1756 10/100 Mbps Ethernet Eridge, Fiber Media Allen-Bradley ;l
-« 1 TSE-EMZT[A 1756 10100 Mbps Ethernet Bridge, Twisted-Pair Media Allen-Bradley
- 1756-ENBF /A 1756 10/100 Mbps Ethernet Eridge, Fiber Media Allen-Bradley
#1756-ERBT G 1756 100100 Mbos EEhernet Bridoe. Twisked-Pair Media Allen-Bradley
- 1756-EMET /A 1756 Ethernet Communication Interface Allen-Bradley
- 1756-EMET /B 1756 Ethernet Communication Inkerface Allen-Bradley
-~ 1756-EWEE & 1756 10/100 Mbps Ethernet Bridge wiEnhanced Web Serv. . allen-Bradley
-~ 1756-SYMCH/ A SynchLlink Inkerface Allen-Bradley |

ControlLogix Level 2 — Page #75

3) Next, you will choose the major revision of the 1756-ENBT module. This revision is usually
on the label on the side of the module, however, this label may not be up to date. You can use
the module information from RSLinx, or type the IP address into your web browser, and click
'Browse Chassis' to determine the revision level. At the time this manual was written, the
modules we use for class are 3.6. This means the Major revision is 3, and the minor revision is
6. Therefore, we must select 3 as the major revision. Press OK when finished.

Select Major Revision x|

Select major revizion for new 1756-EMBT A4
module being created.

Maior Revisor: | R ~ |
| k. I Cancel | Help |

ControlLogix Level 2 — Page #76

4) Next, complete the dialog box for the Ethernet module. Your location may have specific
naming standards, but we will name this module 'Local_Ethernet Module'. The IP address
scrolls across the front of the ENBT module (assuming an IP address has been assigned). In our
classroom, the ENBT module is in slot 3, and the minor revision is 4 (Recall the module's
revision was 2.4, 2 being the major, and 4 being the minor). We will leave the keying as
compatible module. Press FINISH.

New Module x|

Tope: 17RE-EMBT A4 1756 10100 Mbps Ethernet Bridge, Change Type. . | =
Twisted-Pair Media

Wendaor Allen-Bradley

Parent: Local

Marme: ILI:u:aI_ENET Addrezs / Hozt Mame

Description: = " |P Address: | 192 . 168 . 0 . 56

;I £ Host Name: I

Slot: |3 3:

Rewvision: |3 j |E :I Electonic Feying: IEnmpatibIe K.eying j

[T Open Module Properties (n]4 I Caricel Help

5) Our next step is to have the 1756-ENBT connect to the 1794-AENT module over Ethernet. In
I/O Configuration, right click the Ethernet network coming from the ENBT module.
Remember we are connecting to the AENT module from the Ethernet (Not directly from the
backplane)

025 170 Configuration
=3 1756 Backplane, 1756-A7
~ff1 [0] 1756-L62 Slag_Remaval
= f] [3] 1756-EMET/A Local_EMET
s
..... ﬂ [5] I?EE-IEm [ew |""'|EIE|LI|E...-] |

B Faste ChrlHY

ControlLogix Level 2 — Page #77

6) Choose the 1794-AENT/A (Series A)from the list of available devices in the Communications
category. Press OK. (Be sure you select the 1794-AENT/A)

I 5elect Module x|

todule |Descriptiu:un |"v"enu:||:-r |
- 1788-EMETA 1788 10/100 Mbps Ethernet Bridge, Twisted-Pair Media Allen-Bradley ;l
- 1 788-EWEB) A 1788 10/100 Mbps Ethernet Bridge w/Enhanced Web Serv.. Allen-Bradley
- 1794-AEMF I 1794 10/100 Mbps Ethernet Adapter, Fiber Media Allen-Bradley
E1794-0EMT 1794 10100 Mbps Ethernet Adapter, Twisted-Pair Media Allen-Bradley §
- 1794-AEMT/B 1794 10/100 Mbps Ethernet Adapter, Twisted-Pair Media Allen-Bradlesy
- DrivelogixS730 Eth, ., 10,100 Mbps Ethernet Port on DrivelogixS730 Allen-Bradley
- ETHERMET-BRIDGE Genetic Ethertet/IP CIP Bridge Allen-Bradley
- ETHERMET-MODILE aeneric Ethernet Module Allen-Bradley
- Etherhet TP SoftLogixSS00 Etheriet) TP Allen-Bradle:y
- PH-PSSCENAS A Ethernet Adapter, Twisted-Pair Media Parker Hannif
[+ Drives
- HMI

7) Next, select the major revision of the AENT module. We can get this information from the web
browser, by typing the IP address into the browser's address bar, and click '"Module
Configuration'. At the time this manual was written, the AENT module had firmware version
2.12. Therefore, we must enter 2 as the major revision.

Select Major Revision x|

Select Major Rew for 1794-AEMT A4 Module
Frofile being Created:

b ajor B evizion: I 2 j

|] I Cancel | Help |

ControlLogix Level 2 — Page #78

8) You may have naming conventions for remote chassis at your own location. For our classroom
use, we will name the module 'Remote_Chassis'. You can usually get the IP address of this
module from your network administrator, schematics, or other documentation if the address was
not written on the front of the module. Use the IP address the instructor assigns to you. We
will leave the comm format as 'Rack Optimization', and this will treat the three modules in the
chassis as a single connection instead of having a separate connection for each module. The
1756-ENBT module only supports 64 connections in many cases. This chassis consists of 3
slots (not counting the adapter). The minor revision is 12 (because our version was 2.12), and
leave the keying as 'Compatible Module'. Press FINISH when you are finished configuring

the module.
Type: 1734-AEMT A8 1734 104100 Mbps Ethemmet Adapter, Twisted-Pair Media
Wendor: Allen-Bradley
Parent: Local_Ethernet_Module
M ame: IHemnte_Ehassis Address / Host Name
D escription: :I % |P Address: I 192 0168 . 0 . 26
=l " Host Mame: I
Cormrn Farrmat: |Fiau:k O ptimizatian j

Chassis Size: |3 _I:

R esizian:

|2_ 12 =] Elechonic Keying | Compatible Module

[

ControlLogix Level 2 — Page #79

9) Now that a connection has been made between the ENBT module and the AENT module, we
need to establish a connection between the AENT module and the three modules that are in it's
chassis. To add the first module (The 1794-1B16), right click the flexbus of the remote flex
chassis in the I/O Configuration, and select New Module'.

- 1756 Backplane, 1756-47

[0 [0] 1756-L62 Slag_Removal
= f [3]1756-EMET/A Local_EMET
| E-&5 Ethernet
Elﬁ 1794-AENT /A Remote_Chassis
N = |
: . ﬂ I?SE-ENBT{E Mew Module. .] |
Bl [5]1756-1B16 Locs

i Bl T811756-0B16E Le

B Faste Chrl+Y

10) Choose the 1794-IB16 module from the list of digital modules, then press OK.

Il Select Module x|

bl oduile |Desu:riptiu:un |‘»-’en|:||:|r |
= Digital ;l
w1 794-IA 168 16 Paink 120% A&C Inpuk Allen-Bradley
-~ 1794-TAG A & Point 1204 AC Input Allen-Bradley
- 1794-IASI A 8 Point 1204 AC Isolated Input Allen-Bradley
- 1794-IB10X0BE/G 10 Inpukfd Qukpuk 24% D, Sink)Source allen-Bradley
§1794-IB16/4 16 Point 244 DC Input, Sink Aller-Eradley g
-~ 1794-IB 1604 16 Paink 24% DiC Diagnoskic Inpuk, Sink Allen-Bradley
- 1794-IB16X0E16P, ., 16 Inputf/16 Output 24Y DZ, Sink/Protected Source Allen-Bradley

11) Complete the Module configuration dialog as follows, then press FINISH.

Type: 1734-[B16/4 16 Paint 24% DC Input, Sink
YYendor: Allen-Eradley
Farent; Remote_Chasziz
K ame: IFiemu:ute_Inputs Glat: IEI j
Dezcription: I ;I
=l
Camm Farmat; IFiaI:k O ptirization j

Revizion: |1_ I'I _% Electronic Keying: | Compatible Module j

ControlLogix Level 2 — Page #80

12) Next, we will add the 1794-OB16 module to the I/O Configuration tree. Again, this module
resides on the flexbus, so right click the flexbus, and select New Module'

- 1756 Backplane, 1756-A7

------ fa [0] 1756-L62 Slag_Removal

= B [3] 1756-EMET/A Local_ENET

g5 Ethernet
EIIS 1794-AEMT/A Remote_Chassis
2 o
- i Mew Module. .
] 175eENE
----- f 5] 1756-1816 Loc i "% i

13) From the list of digital modules, select the 1794-OB16 DC output module. Press OK.

x|

bd odule |Desu:ri|:uti|:|n |"v’en|:||:|r |
- 1794-0AG A 8 Point 1204 AC Cukput: Allen-Bradley ﬂ
- 1794-0ABTIA 8 Point 1204 AC Isolaked Output Allen-Bradle
1§1794-0B16/4 16 Paint 24% DC Oukpuk, Source Allen-Bradley
- 1794-0B16014A 16 Point 244 DC Diagnostic Qukpuk, Source Allen-Eradley
- 1794-0B16P)4 16 Point 244 DC Prokected Output, Source Allen-Bradley
- 1 794-0B32P A 32 Poink 244 DC Protected Qutput, Source Allen-Bradley

14) Complete the module configuration dialog as shown, then press FINISH.

Type: 1734-0B1644 16 Faoint 24% DC Output, Source
Wendaor Allen-Bradley
Farent; Femate_Chassis

Mame: IHethe_El utputs Slak: |1 _I:

Dezcription; I

-
=l

Carnm Faormat; IFlaI:k Optirmization j

R evizion: |1_ I1 _Ij Electronic Kewing: | Compatible Module j

ControlLogix Level 2 — Page #81

15) Next we need to add the last module to the remote chassis. This will be the 1794-1E8. This
module resides on the flexbus of the flex chassis. Right click the flexbus, and select 'New
Module'.

E|ﬁ 1794-AENT/ A Remnoke_Chassis

=& w

Wy Mews Madule. .. | |

fl 1?53P-EBIE Paste Chrl+

16) From the list of analog modules, choose the 1794-IE8 module, then press OK.

b odule |Desu:riptiu:un |"»-"en|:||:ur |
[=- &nalog =
- 1794-TE1Z2) 8 12 Channel 24 DC Mon-Isolabed Yolkage/Current Analog .. Allen-Bradlesy
- 1794-IE4%0EZ B 4 Input/2 Oukput 24Y DC Mon-Isolaked Analog Allen-Bradley
1 704-IES/E & Channel 24% DC Mon-Isolated Voltage)Current Analog I, .. Allen-Bradley
- 1794-TESHS A & Channel Analog Input /HART Allen-Bradley
- 1794-TESROES /A & Input/4 Ouktput Channel 24y DC Mon-Isolaked Woltage) ... Allen-Bradley
- 1794-IFZXOFETA 2 InpukfZ Qukpuk 24Y D Isolated Analog Allen-Bradley ~
- 1794-TF411A 4 Channel 24Y DC Isolated Analog Input Allen-Bradley

17) complete the module configuration dialog as shown, then press FINISH.

Type: 1734-|E8/B & Channel 244 DC Mon-lsaolated Yoltage/Current Analog |nput
Yendor: Allen-Eradley
Farent; Remaote_Chazziz
Marme: IHethe_.ﬁ.naIDg Slot: IE _Ij
Dezcription: I -
=l
Corm Farmat; Ilhput Data j

Revigion: IE_ I1 _Ij Electronic Kewing: | Compatible Module j

ControlLogix Level 2 — Page #82

18) Now that all of our modules have been added to the I/O Configuration, RSLogix has created
tags for us in the controller tag database. Let's take a look at the controller tags to see where
data from these three modules will appear.

.

Caontroller tes

R _oritroller Tags
23 Controller Faulk Handler

------ 3 Power-Up Handler

19) Take a look at the tag names that RSLogix generated for us.

I Tag Hame &

M ||[--Femote_Chassis:0:C
[+]-Remate_Chaszisz: 0]
[+-Remate_Chassiz:1:C
[+-Remate_Chaszziz:1:0
[+-Remate_Chassiz: 2:C
[+-Femate_Chasziz: 2|
[+-Remate_Chasziz:|
[+]-Femaote_Chazziz:0

20) Notice the tag names assume the name of the adapter in the remote chassis. You will also
notice for this example, that we have two tags for each slot. The slot number immediately
follows the tag name.

I Tag Hame o
P |[+-Remote_ChassidO)C
-Flemute_l:hassiell:ll
-Flemute_l:hassieh B
-Flemu:ute_EhassieI'l [
-Fiemu:ute_EhassieIE -
[+-Femate_Chazsid 2
[+-Remate_Chassis|
[+-Remote_Chagsis:0

ControlLogix Level 2 — Page #83

21) Since we established a connection to each module in the chassis individually, we have two sets
of tags for this remote I/O. We have the base tags, which contain most all of the information
we need to know about the chassis, and we have the derived tags which follow the same naming
convention as the local I/O. The derived tags alias corresponding memory locations in the base
tag that reflect the data for it's own slot when possible.

[+-Remate_Chazsiz:1:0 Derived

ITag MHame & | Walue ® | Force bask
M ll-F-Remote_Chassis:0:C f...1

[+-Femate_Chassiz: 0l 280, ..

[+]-Femaote_Chazziz:1:C R

ags

[+-Remaote_Chagsiz:2:C

(...}

-FI emaote_Chazsis: 2
[+]-Remate_Chazzizl
[+-Remate_Chasziz0

J

22) If you go to edit tags, you will see what based tags the derived tags are aliasing.

Scope: Itest[cnntrnller]

*| Show: [Show &l ~

Fi Tag Mame

&T.-‘-‘-.Iias For

2 [+ Remate_Chassis:0C

[+-Remate_Chassis:0:

IHemu:ute_Ehassis:l.Data[EI]

[+-Remate_Chasziz:1:C

[+-Remate_Chasziz:1:0

xﬁemute_Ehassis:D.D ata[1]

-Hemu:ute_Ehassis:E:E/I /

[+-Remate_Chassis: 2
[+-Femate_Chazsis:|

#1

[+-Femaote_Chazsis:0 _l
|

ControlLogix Level 2 — Page #84

23) For this course we will be using the derived tags. To see the data from the DC Input Module,
you must be on line, on the monitor tags tab, then expand Remote Chassis:0:1. You will see
each input from this module. These tags can be used directly in ladder logic, or you can create

another alias to use for your project.

Tag Hame &

Yalue

[+-Remate_Chazsiz:0:C

Jooa

4

Z#0. ..

2 E—Fﬁ emaote_Chassiz: 0
—Femote_Chazziz:0:.0

—FRemaote_Chaszizz0:].1

—Remate_Chasziz:0:].2

—Remate_Chasziz:0:1.3

L Barmmba Chaaaian: A

0 e I e e)

ControlLogix Level 2 — Page #85

Basic Instructions

A Little History

A common programming language used in PLC's is called Ladder Logic. Ladder Logic was developed
years ago to help electricians adapt to PLC's. Ladder logic is still widely in use today although this
language appears to be weakening. Ladder logic is similar to Assembly Language in many ways which
was widely used to program computers years ago. Since then, higher level languages such as PASCAL
have come along. In the last few years we have seen a more Object Oriented approach to programming
in languages such as Java. The ControlLogix processor seems to be following the Object Oriented
approach with it's User Defined data types (UDTs), and event driven tasks.

Here are some of the instructions available in Ladder Logic:

Examine If Closed (XIC)

You will find that most instructions in the SLC, PLC-5, and ControlLogix consist of three character
pneumonics. The XIC looks at a given bit of memory in the processor. If this bit is on, then the XIC
will intensify indicating logical continuity through the instruction. Here is what the XIC looks like in
logic.

Main Pump Switch Main Pump
Local:5:1.Data.0 Local:6:0.Data.0
1 C Oy

d L LR ‘

ControlLogix Level 2 — Page #86

Examine If Open (XIO)

The XIO is just the opposite of the XIC instruction. The XIO looks at a bit in memory. If the bitis a0,
then the XIO is true. It will intensify indicating logical continuity through the instruction, and the next
instruction in the rung will be examined. This is usually referred to as a NOT instruction because the
address the instruction points to must NOT be on for the instruction to be true. Here is an example of
how the XIO will appear in ladder logic:

Main Pump Switch Backup Pump
Local:5:1.Data.0 Local:6:0.Data.1
1 |I 4/ <D

In the above example, you can see that as soon as the Main Pump Switch is shut off, a bit is set to run
the backup pump.

Output To Energize (OTE)

The output to energize simply turns a bit on when it is evaluated as true, and shuts a bit off when the
instruction is evaluated as false. Using the same address on an OTE in two different places in the
program is considered bad programming practice. The two OTE's can interfere with each other, and
makes troubleshooting difficult.

Below you will find two different states of the same rung. The first state shows the rung as false, so a
zero 1s written to B3:1/0. The second state is true, and a 1 will be written to B3:1/0.

| cycle_finished safetys QK in_cycle Cooling
3 3 E 1E 3/ E P
| J dL I E -
| cycle_finished safetys_OK in_cycle Coaling
3 3 E 3 E I/ E oy
| JC JC I E e

ControlLogix Level 2 — Page #87

Output To Latch (OTL) and Output To Unlatch (OTU)

The Output To Latch instruction will write a 1 to it's address when true. When the OTL goes false
again, the output address will remain a 1 until another instruction such as the Output to Unlatch shuts it
back off. This is true even if the processor powers down, and is brought back up!! Y ou must use
caution when using the Latch/Unlatch when controlling real world devices. Here is what the
Latch/Unlatch will look like in logic:

Energize SawMotor Sawhlotor
1 C r’L‘\
1 C L
ShutoffSawMotor SawMotor
1 C fu‘\
1 C Ll

If the output address is off, both the latch and unlatch instructions are not intensified, but once the bit is
turned on, you will see both the latch and unlatch intensified even though both inputs are shut off.

Energize SawMotor SawhMotor
I C r’L“\
J C L
ShutoffSawMotor SawMotor
1 C fu'“\
1 L nAL

Due to the processor scan cycle, since the unlatch is placed after the latch, if both inputs were to go
true, the Unlatch instruction would win, and the output address will be shut off. If the latch was after
the unlatch, then the latch would be the last instruction scanned, and therefore the bit would be left in
the energized state.

ControlLogix Level 2 — Page #88

Timers

Timers are generally used for delaying an event from taking place, or to delay a device from shutting
off either on an on transition or an off transition. There are three types of timers: The Timer ON delay
(TON), Timer Off delay (TOF), and the Retentative Timer On delay (RTO).

Timers can be created as Controller Tags or Program Tags. A tag of the TIMER data type consists of
the following components: Preset word (PRE), Accumulate word (ACC), Done bit (DN), Timer
Timing bit (TT), and Enable bit (EN). For Timers, the Enable bit follows the rung condition.

™ |E-MotorDelay TIMER
[+]-k atarDrelay. PRE DIMT Decimal
[+]-k atarDrelay ACC DIMNT Decimal
—tdatarDielay EM BOOL Decimal
—tdatorDelay. TT BOOL Decimal
—td atarDrelay. O BOOL Decimal
—tdatarDielay FS BOOL Decimal
—MotorDelap. L5 BOOL Decimal
—totorDelay. 04 BOOL Decimal
—tatarDelay.ER BOOL Decimal

The entire timer is addressed by it's element (example: T4:0) Pieces of the timer can be used in logic
however such as the DN bit on an XIC (T4:0/DN), or the Accumulated value in a MOV statement
(T4:0.ACC)

ControlLogix Level 2 — Page #89

Timer On Delay (TON)

The Timer On delay delays an event from taking place. Once the timer becomes true, the enable bit
becomes true instantly. The timer will also start timing instantly, so the TT bit becomes high. Since
the timer is timing, the accumulated value will increment.

Once the Accumulated value reaches the preset, the done bit (DN) will go high, and the timer will stop
timing. The accumulated value remains at (or near) the preset until the rung goes false again. Here is
what a typical timer might look like in logic:

When the switch is energized, the timer will begin timing. When the ACC value reaches the PRE
value, the DN bit goes high, and the main motor will start. Since the Time Base is .001, therefore 5000
(preset) times .001 (timebase) = 5 second delay.

hMotorStart Switch TOM
1 F Tirner On Dela —EN————
J L
Timer —DN>—
Preset 500 &
Arccurm 0«
MotorFun
1 oy
1 L L

ControlLogix Level 2 — Page #90

Timer Off Delay (TOF)

The Off Delay Timer is generally used to delay an event from shutting off. Image a lube system on a
large motor. As long as the main motor is turning, the lube pump should be running. When the main
motor shuts off, you wouldn't want to shut off the lube pump immediately because the main motor
needs time to coast down to zero RPM's. The Main motor could run off the EN bit, and the Lube motor
could run off the DN bit.

On the Off delay timer, as soon as the rung goes true, The EN bit goes true as it does for all timers.
Since the Off delay timer does not delay the DN bit from shutting off, the DN bit goes high
immediately. Remember, the TOF instruction delays the DN bit from shutting off, not turning on.
(Plus if we are delaying the DN bit from shutting off, it needs to be high to begin with). While the rung
is true, the timer is not timing, and the ACC value is at zero.

When the rung is shut off, the EN bit shuts off immediately. The ACC value will start timing until it
reaches PRE then the DN bit will shut off.

Here is what the TOF instruction might look like in logic:

MainhdotorStant Switch TOF
1 F Timer Off Delay —CEMN>—
Timer MotorOfiDelay —CDRN>—
Preset 30000 «
Arccum 0«
MoatorCfDelay. EM MainhlotorBun
I Y
1 L -
MotorOfDelay. DM LubeMaotor
I oy
1 L o

When the motor switch is energized, both the main motor and the lube motor will energize
immediately. When the main motor switch is shut off, the main motor shuts off immediately, but since
the TOF delays the DN bit from shutting off, the Lube motor will shut off 30 seconds later. Warning:
Using the RES instruction on a TOF instruction could cause unpredictable operation.

ControlLogix Level 2 — Page #91

Retentative On Delay Timer (RTO)

The RTO instruction works a lot like the TON instruction with one main exception: When the rung
goes false on the RTO instruction, it will retain the ACC value. When the rung becomes true again, the
ACC value will pick up from where it left off. One good application for the RTO would be an hour
meter to indicate total runtime for machinery.

Since the RTO does not reset itself when the rung goes false, the RES instruction must be used to reset
a timer. Here is a practical application:

MachineRunning RTO
1 F Retentive Timer On —EMN—
Timer FunTime —CDKN>—
Preget 3R00000 «
Accum 0«

This light energizes
after 1 hour of run

time
RunTim. DM TimeForLube3ystem

1€ o

4 C R
Reset RunTime
7 E CRES>—

In this example, once the machine accumulates 1 hour of run time, a light might come on indicating
that a lubrication needs to be engaged. Once the operator lubricates the machine, he can reset the hour
meter.

ControlLogix Level 2 — Page #92

Counters

Counters count rung transitions. The CTU runs the accumulated value of the counter up on the false to
true rung transition, and the CTD instruction runs the accumulated value down. The CTU and CTD
can be used in conjunction with each other.

Counters consist of the following components:

ACC Accumulated Value PRE Preset Value
CD Count Down Bit CU Count Up bit
OV Overflow Bit UN Underflow bit

Tags used for counters are declared with the COUNTER data type. Here is an example:

™ |[F-PartsCounter COUMTER
[+]-PartzCounter. PRE DIMT Decimal
[+|-PartzCounter ACC DIMT Decimal
—PartzCounter. CLI BOOL Decimal
—PartzCounter, CD BOOL Decimal
—PartzCounter. DM BOOL Cecimal
—PartzCounter, 0% BOOL Decimal
—PartzCounter. 1M BOOL Decimal

For the CTU instruction: The CU bit is high when the CTU instruction is true. The ACC value
increments by the value of 1 each time the CU bit goes high. When the ACC reaches the PRE, the DN
bit will be set. The CTU will continue to increment the accumulated value until it reaches the
maximum possible value for a 32 bit signed integer (2147483647). If the CU bit goes high one more
time, the OV bit will be set, and the ACC value will go to -2147483648. Each time the CU bit goes
high, the ACC value will still continue to increment (become less negative).

For the CTD instruction: The CD bit is high when the CTD instruction is true. The ACC value
decrements by the value of 1 each time the CD bit goes high. Any time the ACC is above or equal to
the PRE, the DN bit will remain set. The DN bit is reset if the ACC falls below the PRE at any time.
The CTD will continue to decrement the accumulated value until it reaches the minimum possible
value for a 32 bit signed integer (-2147483648). If the CD bit goes high one more time, the UN bit will
be set, and the ACC value will go to 2147483647. Each time the CD bit goes high, the ACC value will
still continue to decrement (become less positive).

ControlLogix Level 2 — Page #93

Here is a practical example of a CTU/CTD implementation:

O CTL QM CTD

L %044
7 %014

Conveyor

4

Each time a pizza goes into the oven, the ACC value is incremented by one. Each time a pizza comes
out of the oven, the ACC value is decremented by one. Therefore, the ACC value represents how
many pizzas are in the oven at any given time. The DN bit could be used to shut the conveyor down if

pizzas are going into the oven and not coming out!

Prox1 ZTL

1 F Count Up —CU—
Counter PizzaCounter —<DN>—
Freset oe
Arccum 0e

Prow2 ZTD

1 F Count Down —CO—
Counter PizzaCounter —CDN>—
Preset 7e
ArCcum Te

Reset FizzaCounter

1 E CRESS>——

ControlLogix Level 2 — Page #94

Using the GSV Command (Accessing the system time)

The PLC-5 and SLC-500 had a STATUS FILE which could used by logic at any time simply by
referring to the memory location where the time and date were stored.

The system time in ControlLogix works much differently. When a new project is created, no variables
exist in the tag databases. If you are going to use a variable in logic, it must first be created first.

The system time in ControlLogix is called the WALLCLOCKTIME object. First an array must be be
allocated in the tag database, then we must use a GSV (Get System Value) command to continuously
load the time from the system into the new array.

You should access the help file in RSLogix 5000 for a complete description of the
WALLCLOCKTIME object. To access the help file, click Help on the menu bar, then click Contents.
Click the FIND tab. If this is the first time you are using the Help|Find feature, you may be prompted
to select next, then finish to build the help database. Type wallclocktime in step 1, then in step 3,
double click 'accessing the wallclocktime object'.

For this example, we are simply going to create an array of seven elements in the controller tag
database, then use the GSV command to populate the array with the system time. The purpose of each
of the seven elements are as follows:

Element 0 — Year

Element 1 — Month

Element 2 — Day

Element 3 — Hour

Element 4 — Minute

Element 5 — Second

Element 6 — Microsecond

Let's get started....

1) First we need to open the controller tag database at the top of your controller organizer window.

ControlLogix Level 2 — Page #95

2) Next, let's be sure the 'edit tags' tab is selected so we can add a new tag.

& Controller Tags - test{controller]

Scope: Itest[cnntruller] TI Shgw;IShnw All vI

|F

Tag Mame

i)

Aliaz For

Baze Tag

|

1 I L4 I\ Monitor Tags E:Iit Tags I‘

3) The new tag we create will be called 'time', and the type will be 'DINT[7]'. Recall that the [7]
will create an array of 7 elements. Press enter to accept the tag.

#& Controller Tags - test{controller]

Scope: Itest[u:u:untru:uller]

j Show: IShDW Al

j Sark: ITag M ame

| P | Tag Mame

(i

Aliaz Far

Baze Tag I Type

A+ -time

A | kY Montar Tags }gEdit Tags,f

| [

4) Let's look at the Array. Click “Monitor Tags”. Click the “+” next to the tag name, and you will
see that seven elements have been created.

Controller Tags - test[controller]

Scope: Itest[u:u::ntru:uller]

j S howy: IShI:IW Al

I_'_I'_ag Mame

i

W alue

2 Eltime

H

H|-tirme[0]

F|-tirme[1]

H-tirme[2]

F-tirne[3]

H-tirne[4]

H-tirne[5]

o O Oy O o N e |

H-tirne[B]

DDDDDDDH—"‘*I‘

1 | k IE Monitor Tags F Edlit Tags /

ControlLogix Level 2 — Page #96

5) Next we need to choose which routine we will be adding the GSV to. Recall that the purpose of
this GSV is to extract the wall clock time from the system, and load it into the tag we just
created. For this example, we will go to the MainRoutine of the MainProgram. You can access
the routines from the controller organizer window.

Elﬁ Tasks
{ EI% MainT azk.
: EIE& b ainProgram

6) Be sure the end rung is highlighted, then type GSV (Then press “Enter”) You will notice the
GSV command has been added to you logic.

[E] MainProgram - MainR outine™

izl

55N i
et System YWalue
Class Mame
Instance Mame
Attribte Mame
Dest

R R]

ki

(End) |

7) Double click the “?” next to Class Name. The class will be WALLCLOCKTIME. There is
only one instance available of this class, so we don't need to select one. The Attribute will be
DateTime. The destination should be time[0].

G5
- Get System Value -
Clazs Mame WALLCLOCKTIME
Instance Mame

Attribwte Mame DateTime
Dest tirme[0]
0 &

ControlLogix Level 2 — Page #97

8) Now you can download your work, and go on line in Run mode. If your GSV command is
working properly, the GSV command will be extracting the time from the system, and loading
the wall clock time (of 7 elements) into our time tag starting with element 0. To test this, go
back to your controller tags, Be sure the time tag is still expanded, and you will see data in the
following format:

time[0] = Year

time[1] = Month
time[2] = Day

time[3] = Hour
time[4] = Minute
time[5] = Second
time[6] = Microsecond

Controller Tags - test[controller]

Scope: Itest[cnntrnller] = Shaw: |Show Al x| sa ITag Name =]
Tag Hame £ | Malue € | Force Maszk € | Shyle Type
| 3 (=Bt fo.at {... 1 |Decimal DIMT?]
[+/-tinne[0] 2005 Decimal DIMNT
[+]-timne[1] 10 Decimal DIMT
[+-timne[2] 3 Decimal DIMT
[+|-time[3] 1a Decimal DIMT
[+-time[4] 33 Decimal DIMT
[+-time[5] 54 Decimal DIMT
[+|-time[E] 5431326 Decimal DIMT
A | F |\Munitur Tags ,{ Edit Tags ,f || 1 |

ControlLogix Level 2 — Page #98

ControlLogix Level 2 — Page #99

On line Editing for ControlLogix

There are five basic steps in performing an edit on line.

1) Start Edits,

2) Make Changes,
3) Accept edits,
4) Test Edits, and
5) Assemble edits.

Note: Beginning with Version 13, 'Finalize Edits' will accept, test, and assemble all in one step.
Unless you are very experienced, it is recommended that you follow the full 5 step procedure.

Although these steps seem very simple there are a few rules to watch out for.

You cannot change the data type of existing tags. If you create a new tag with the wrong data type,
you must delete the tag, and declare it again.

You cannot make an on line edit if the key switch is in Run Mode.

You do not need to perform an on line edit to directly change a value in the data table such as the

preset of a timer or counter.
If the processor is in program mode, you do not need to test and assemble after accepting.
If the processor is in program mode, and a rung is deleted, there is no warning.

Let's walk through the 5 step procedure:

Look at the rung below. Our objective is to transfer control of the output to LocalSwitch.6. If you
click on bit LocalSwitch.7 and attempt to make a change, nothing happens.

LocalSwitch. 7
L ocal 5l Data 7 swarnings[26)
1 F <2

ControlLogix Level 2 — Page #100

Step 1) Start Rung Edits

The first step is to put the rung into edit mode. There are several ways this can be done:
« Double click the rung number

- Right click the rung number and start rung edits

« From 'Logic' on the menu bar, click On line Edits, then start pending rung edits

+ Click the start rung edit icon in the on line editing tool bar just above the ladder view

El MainProgram - System_2_Control

(k] 2] wise| I
EStart Pending F.ung Edits

Notice that RSLogix made a copy of the rung for us to work with. By looking at the power rails, you
can see the bottom rung is being executed by the processor, and the top rung is the one you need to
make edits to. You will also notice the e (edit) or i (insert) and r (replace) in the margin are lower case.
This means the edits are not in the processor yet. If you are adding new logic instead of modifying
existing logic, this is the step where you add a new rung.

LocalSwitch.7 ‘

=Local sl Data 7= WarTINGE[26)
S

JFE
1L R |

Local=witch. 7

=Local ol Data f= wearnings[26)
a 1LC P
1 oA

- = = =

ControlLogix Level 2 — Page #101

Step 2) Make Changes

Now that the rung is in edit mode, changes can be made.

If you added a new rung in step #1, this is where you need to add your logic to the new rung.

Be careful not to add any logic that will fault the processor or cause damage to personnel or equipment.
Notice the i (insert) and r (replace) zones are in lower case. This means the changes are in RAM only,

and have not been sent to the processor.

In this example, bit 7 is being changed to bit 6 on the input.

LocalZwitch B
=Local: 5] Data &= warnings[26]
1LC P
1L L ‘
r Local=witch. 7
r =Local ol Dats. 7= wwarnings[26)
2 r JE oo
1L - A
¥

ControlLogix Level 2 — Page #102

Step 3) Accept Edits

Now that your rung is set up as you need it, it's time to send the edits to the processor. You can accept
pending rung edits (This would just accept the rung you have selected), or you can accept pending
program edits (This would accept all the edits in the current program) There are several ways to
perform the next three steps.

« Right click the rung number, and accept edits
« Click Logic | On line Edits | Accept (rung or program edits) from the menu bar
+ Click one of the Accept Edits icons in the on line editing tool bar as shown below

[Z] MainProgram - System_2_Control*

| lelet]] Wil #IE w3 ®

Iﬂjl Accept Pending Rung Edit5|

i : ng

Notice in the margin rung 1 is marked for insertion, and rung 2 is marked for removal. The I's and R's
are capitol because the edits are now in the processor. Look at the power rails. You can see the old
rung is still being executed by the processor.

ccepk Pending Program Edits|

N
LocalSwitch B
=Local: 3l Data B= warnings[26)
1L O
1 I A
LocalSwitch.?
=Local Sl Data 7= warnings[26)
2 F {r—i

You will also see that pending edits exist by looking at the on line tool bar.

Rem Run 8 M RunMode WG

Mo Forces p_| F Controller OK. @

[Battery OK
=J [|/0 Nat Responding ll

ControlLogix Level 2 — Page #103

Step 4) Test Edits

When you test edits, the new or modified rungs will become active. The old rungs will be left in the
processor until we are sure our new rungs are working properly. Be aware that if you change an output
address, there might no longer be logic writing to that address. This means that you could abandon a
bit in the ON state.

You can test your edits by doing one of the following actions:
1) Right click the rung number
2) Choose Logic | On line Edits | Test accepted program edits from the menu bar
3) Click the Test icon in the on line edit tool bar above your logic window.

[l MainProgram - System_2_Control*

o e e e I 7 P L

El Eél E‘ﬁl Erl |Test En:u:epted Program Edits|

If you are modifying an input type address you should also be careful. If the rung was previously true,
you may want to make sure your new logic is also going to be true at the moment you accept, or the the
output may shut off.

Let's test the edits, and you will notice the new rung(s) are active. If the edits do not work the way you
anticipated, you can un-test to revert to the old rung while you make other changes to the new rung.

Notice the power rails:

Localzwitch &
=Local ol Data &= wwarmings[26]

JE Rl
1 C R

R LocalSwitch. 7
R | =LocalslData.?= warnings[26]
2 R 1LC Kl
1 L
R

ControlLogix Level 2 — Page #104

Step 5) Assemble Edits

If you logic is working properly, go ahead and assemble the edits. Assembling removes the old rung,
and the edit zone markers. After Assembling, you may want to save your work to the hard drive.

You can assemble by using one of the following methods:

1) Right click the rung number, and choose accept edits (if available in your version)
2) Click Logic | On line Edits | Assemble accepted program edits from the menu bar.
3) Click the Assemble Edits icon in the on line edits tool bar.

E] MainProgram - System_2 Control (Testing Edits)* =

PEEEEE 7T N

Assemble Accepted Program Edits[

Notice the Logic now appears to be normal:

LocalSwitch.6
=Lacal:5: Data 6=

warnings[26)

L

JE
1L

Local=witch.0
=Local 5 Data 0=

swarnings[21]

L

JE
2 I ulls

ControlLogix Level 2 — Page #105

Forcing I/0

Forcing can be used for troubleshooting, and to some extent simulates real world jumpers. Leaving
forces in the processor, or depending on forced I/O to make your equipment run is considered bad
practice.

Look at the diagram below:

Input Module Processor Output Module
— =
Input (Dutput =1
Table |Takle

Under normal circumstances, the following events take place:
1. The switch is shut

A 1 appears in the input tag

The XIC instruction goes true

The OTE is enabled

A 1 is written to the output tag

The light will energize on the output module

AN

Forcing the input:

If you place a jumper across the switch, you would have the same effect as the switch always being
shut. A 1 would always be in the data table, the logic would be true, and the light would energize. The
same effect applys to forcing. Forcing the input on would result in a 1 in the input data table for the
switch, and all logic would be executed as if the switch was shut. The opposite applys to an OFF force.
An Off force would be similar to cutting a lead on the switch. A zero would result in the input data
table.

Forcing the output:

If you place a jumper to the output, the output table would still be a zero if the logic is false.
Information does not flow from the output device to the output data table. Therefore, any XIC
instruction that is looking at the output bit would also be false. The same applies to forcing. If you
force an output device, the output data table will still be controlled by the ladder logic.

Note: Even though forcing an output does not directly effect the data table, The field device itself

could feed an input back into the processor causing other things to happen in logic. Know your system
before using the force feature.

ControlLogix Level 2 — Page #106

There are several ways to force I/O. Forcing can be applied from ladder logic, or from the Controller
Tag database. Internal memory locations cannot be forced. You can only force real I/O, Aliases to real
I/O, or producer/consumer tags.

In this example, we will force an input directly from ladder logic. Right click on the input address, and
choose 'Force On'.

Remaote Reset FB

Remote
=Local: 5 Data 0= DI PE
Edit "DI_1600" Properties
Toggle Bit Chrl+T

| Force On

Notice the force light on the processor begins to flash (if your process has a force light) indicating that
forces are installed, but not enabled. The force can be enabled from the on line tool bar as shown
below:

A | RS . —
Mo Faorces 2 ™ ok qP |
™ nar 1 1 1
Ma Edits I}'D Forcing | Enable &l [} Forces
Fedundancy SFC Forcing » Disable All T0 Forces

Remove All 10 Forces

Controller Properties

The force light on your processor will now be solid amber indicating that installed forces have been
enabled. If we go to the data table, you will see that the input bit is on, and it is red indicating that a
force has been enabled on the input. You will also see that the force mask reflects which bits have
been forced in the data word. Forcing can be preformed directly from the force mask as well.

[=-Local:5:l f...1 Forced
[+]-Local:5:1.Fault 2#0...

[—[-Local5l.Data B o2f. | 2 e viee_eraa_wame_aana_swaa_aaal

I—Ln:n:aI:E:I.Data.El] 1 1

In the force mask, the value of 1 indicates a bit has been forced on. The value of 0 indicates an off
force, and a period indicates no force is installed on a particular bit.

ControlLogix Level 2 — Page #107

ControlLogix Level 2 — Page #108

JSR Instruction

We discussed the use of the JSR instruction in the main routine that instructs the processor to execute a
subroutine. A subroutine can also behave as a function, and with the JSR instruction, we can pass
values to that subroutine, and the subroutine can perform math on this value, and return an answer back
to the JSR statement. This can be very useful when the subroutine must be called repeatedly
throughout a program scan to perform operations such as converting Celsius to Fahrenheit.

This example will walk you through setting up the JSR instruction to pass several values (Celsius) to a
subroutine. The values will then be converted, and returned to the JSR statement in Fahrenheit units.

1) Add the a routine called “Calculations” to the MainProgram.

=3

MainProgram
E‘ Program Tags

ralculations

2) Add the following tags to the CONTROLLER tag database as shown:

1. Celsiusl as REAL

2. Celsius2 as REAL

3. Celsius3 as REAL

4. Fahrenheitl as REAL

5. Fahrenheit2 as REAL

6. Fahrenheit3 as REAL

7. Workspace as REAL

Scope: Imyprucessnr[cuntrnllj Shio: IShDW Al ;I Sok: E
IF" Tag Hame & | dliaz F| Baze Tag | Tepe Shyle
| Celsiusl REAL Float
| Celsius? REAL Float
M| Celsiusl REAL Float
| Fahrenheit! REAL Float
| Fahrenheit? REAL Float
| Fahrenheit? REAL Float
T ‘wokspace REAL Float
* |

ControlLogix Level 2 — Page #109

3) Next, on the MainRoutine, we'll add a JSR instruction that will pass one parameter (Celsius1) to
the calculations routine. When we get a value returned from the calculations routine, we will
place this value into Fahrenheitl. To add the JSR instruction, type the following text onto a
rung of the MainRoutine: jsr calculationsl 1 Celsius Fahrenheitl

JER
Jump To Subroutine
Routine Mame calculations
Inpat Par Celziuzl
Return Par Fahrenheit1

4) So far, we have the project set up to pass the value of Celsius1 to the subroutine called
“Calculations”. This subroutine will perform the math function necessary to perform the
conversion, and will return a value back to the JSR statement when the subroutine is finished.
When the JSR statement receives this returned value, it will store the value into the tag called
Fahrenheitl1.

5) We are ready to set up our subroutine. Let's Open the “Calculations” routine, and type the
following text into rung 0: SBR CPT

=BR ZPT
Subroutine Campute
Drest 7
T
Expression i

6) When this subroutine (calculations) receives a value from the JSR statement, it will store this
value in a location declared by the SBR tag (our workspace). The CPT statement will then
manipulate this workspace to convert the workspace to Fahrenheit. Set up these two
instructions as shown below: (You can right click the SBR statement to add an input
parameter.)

=BR CPT
— Subroutine Compute —
Input Par wWorkspace ezt Workspace
0.0 &

Exprezzion (Workspace*! §)+32

ControlLogix Level 2 — Page #110

7) Now, all that's left to do is to return the value of the workspace back to the JSR instruction, so
the JSR can store the return value into the Celsius tag. Click the end rung in calculations, and

type: RET Workspace

8) When finished, your calculations routine should appear as shown below:

=BR

— Subroutine
Input Par Warkspace

CPT

Compute
Dest

Expression (Workspace*! 81+32

Wiarkzpace
0.0 &

RET

Return —
Return Par wWarkzpace

9) Now, let's go to the Controller tag database. When you enter a Celsius value into the Celsiusl
tag, this value should then be converted to Fahrenheit, and returned into the Fahrenheitl tag.

& Controller Tags - myprocessor{controller)

S cope: Imypru:u:essnr[u:u:untn:ull "I Show: ISHDW Al "I Sark ITag Mame
Tag Mame & | W alue & | Force Mazk *
P EEY (mJ]
Celziuz2 n.o
Celziuz3 n.o
Fahrenheit (z1z.0]
Fahrenheit2 n.o
Fahrenheit3 n.o
Workspace 0.0

ControlLogix Level 2 — Page #111

10) Now, add two more JSR statements to the MainRoutine that will convert Celsius2 and Celsius3
to Fahrenheit values as well.

J=R
Jump Ta Subroutine —
Foutine Mame calculations
Input Par Celziuzl
Return Par Fahrenteit

J=R
Jump To Subroutine —
Foutine Mame calculations
Imput Par Celzius2
Feturn Par Fahrenheit2

JER
Jump Ta Subroutine —
Foutine Mame calculations
Inpt Par Celziuz3
Feturn Par Fahrenbeits

ControlLogix Level 2 — Page #112

Introduction to Function Blocks

Function blocks are a method of programming that uses graphic objects on a sheet to represent logical
functions. To program and view function blocks, you must have the appropriate license key installed
on your computer. Function block routines can consist of multiple sheets of these block diagrams.

The advantage of using function blocks is that they are more graphical, and represent information flow
very easily.

The disadvantage of function blocks is that if not used properly, the project becomes very difficult to
follow.

In this example, we will be converting a simple line of logic into a function block diagram for the
purpose of understanding the basic operation of this language.

In this example, I've created two routines, Ladder, and FBD. As you can see, the FBD is just another
subroutine of the MainProgram, so we must add a JSR in this case, so it will execute.

=5 Cantraller FED - =] MainProgram - MainRoutine 10l x|
] e e =g =) M e I 1
..... 3 Power-Up Handler #q
=3 Tasks ;
;] Jump To Subrovtine
= % MainTask Routine Mame Ladder
= % MalnF'ngram
JSR
1 Jump To Subroutine
; Foutine Matme FBED
----- 23 unscheduled Programs
=- B Mation Groups
------ L 28 Llngrn:nuped fxes s
™= o« 1~ a—

In the LADDER routine, we have a simple line of logic as follows:

Swyitch.0 Swyitch 2 Ligght.0
=Local o Data(0].0= =Local 5:l Data[0].2= =Local 60 Data[0].0:=
1€ 1C RS
J 0 JC R

Swvitch .1 Sywitch. 3
=Local 5 Data(0].1= =Local 5 Data[0].3=
1L 1L
1L 1L

This logic can be expressed by the following statement in english:
If (switch.0 OR switch.1) AND (switch.2 OR switch.3) then light.0

ControlLogix Level 2 — Page #113

Next, we'll convert this to a function block, and we will have the exact same result.

1) First, let's go to the FBD routine. Online editing is possible for function blocks, however, for
this example, we'll do this offline.

& RSLogix 5000 - FBD [Emulator]*

File Edit Wiew Search Logic Comrunications Tools

Bl | & 22| «|<] [

5. A —
Mo Forces | FDK @ '
BAT

Mo Edits = =

| 3]

2) Now open the FBD routine in your Controller Organizer window:

-5 Tasks

=45 MainTask

EIEQ MainPrograr

[Program Tags
g3 MainfLoutkine

3) Next, well add our input references. To do this, right click the FBD sheet, and add for IREF
elements (InputREFerences)

2 Paste Chrl+y
{ add Element. .. AlE+Ins]
Seleck all
Criginal Wigw Zhrl+1

ControlLogix Level 2 — Page #114

4) When you are finished, your sheet should appear similar to what is shown below...

A | =]

5) Next, we'll address the Input Reference elements. Double click the '?' on each of the input
reference elements, and browse to the switches we are using for this conversion as shown:

u]
Switch.0]

Switch.q [+

u]
Switch 2 -

u]
Switch .3 o

[}

6) Next, we will add two Boolean OR instructions. Right click your sheet, and choose “Add

Element”
T Paste Chrl4
Ir &dd Element, ., Blt+Ins -) |
F Select Al
i eled

ControlLogix Level 2 — Page #115

7) Under the Move/Logical category, choose the “Boolean OR” instruction.

M ame

| Dezcription |

@ tovesLogical ;I
—_F MYMT
—31F AND
—1{_& OR
—31_F =0R
—{_F NOT
—3F BTDT

Mazked Move with Target

Bitwize AMD

Bitwize Inclusive OR

Bitwize Excluzive OR

Bitwize MOT

Bit Field Distribute with T arget J
Boolean dnd

~|

8) Repeat this to add a second “BOR” statement, and a Boolean AND statement (BAND). Arrange

your sheet as follows:

u]
Switch.0

u]
Switch. 1

u]
Switch. 2

u]
Switch. 3

BOR_01
BOR |
Boalean Or
1 ut u] BAMD_01
] In ut [
BAND |
] InZ
] Inz Boolean And
u]
= Ind = In Out=
= InZ
BOR_0Z
=] In3
BOR |
= Int
Boalean Or
u]
= Ini Out @
] InZ
] In3
] Ind

ControlLogix Level 2 — Page #116

9) Now, we only need 2 inputs for each of these Boolean statements, so click the Elipsis, and
uncheck inputs 2 and 3 on each of the 3 statements you just added:

BOR_O4
BUF{ I |
F'arameters“l Tag |
Yig | Mame Walue Type Dezcription
| | [T |Enableln 1|BOOL Enable Input. If Falze, th...
| | W |l 0|BOOL Boaoleat Input ta the instr...
| | ¥ |In2 0{BOOL Boolean [nput to the instr...
15 |In3 0|BOOL Boaolean [nput ta the instr...
[_ 1* I |Ind 0|BOOL Boaolean Input ta the instr..
-l--r g 0|BOOL Boolean [nput to the instr...
I | [|In& 0|BOOL Boolean nput ta the instr...
I [[In? 0|BOOL Boolean [nput to the instr...
L[|In8 0|BOOL Boaoleat Input ta the instr...
0| [EnableDut 0|BOOL Enabls Output.
0| [|Out 0|BOOL The rezult of ORing all ei..

10) When finished, your sheet will look similar to the image below:

BOR_0O1
BOR . |
Bowlean Or
u] u] BAMD_01
Switch.0 =] In Out [
u] BAMD _|
Switch. 1] InZ
Boolean And
BOR_0z2 u]
= In1 Cut @
BOR _I
=] InZ
Boolean Or
u] u]
Switch.2 = Ini Ot [
u]
Switch.3] In2

ControlLogix Level 2 — Page #117

11) Now we need to add an output reference. Right click your sheet and add the output reference.

Label this reference “light.0” as shown:
BOR_01

BOR .|

Boolean Or

u] u] BAMD_OM1
Switch.0 = Ini Out [0

u] BAMD |
Switeh.q = In2

Boolean And

BOR_OZ 0
= &] In1 Out |51 3 Light.I:I
"o o (e Lighta]

= InZ

Boolean Or
u] u]

Switch.2 =1 In Out [0
u]

Switch.3] In2

12) Now we need to connect the nodes. Move your mouse over the top of the IREF for switch.0.
This tip will turn green to indicate you are at the correct location to make a connection. Click
on the green tip, and draw a line to the Inl node of BOR 01

Switch.0

Switch.q

Switch.0 In

Switch.q

13) Repeat this for the other connections as shown:
BOR_04

BOR _I

Boalean Or

itoh D u] 1 ut u] BAND_01
witch. —=] In ut [—

u] BAMD |
Switch. 1 —1] InZ |

Boolean And
BOR_02

— In1 Out [F— —T Light.0
son g (_ tishto)

—] InZ
Boalean Or

u] u]
Switch.2 —1] In1 Ot ¢

u]
Sitch. 2 —] In2

ControlLogix Level 2 — Page #118

14) Now, remove your logic from the LADDER routine, and download your work. Take the
processor to run or remote run mode.

Switch.0

Swnitch.q

Switch.2
Switch .2

u]
F— —=9 Light.0

BOR_0O4
BOR |
Boolean Or
In1 Qut u] BAMD_0O1
—i In ut [—
BAND |
—=] InZ |
Boolean And
BOR_0O2Z |
— — In1 Out
BOR I
|— — —=] InZ
Boolean Or
u]
—=] In1 Out [f
—I] InZ

15) Now just as before, if you energize switch.0 OR switch.1, this is not enough to energize your
output. You must also energize switch.2 OR switch.3 as before.

ControlLogix Level 2 — Page #119

Creating an Add-On Instruction

Add-on instructions allow you to create your own instructions which can be used in your project. Add-
on instructions can be in the form of Ladder Logic, Function Block Diagrams, or Structured Text. This
can be useful if you have complex algorighms, and need to make the process of troubleshooting easier,
or if you have common algorithms that will be used many times throughout a project. To graphically
view the flow of information, we are going to use a Function Block Diagram for this particular
example. The add-on instruction we write will convert Celsius to Fahrenheit.

EllE] Mation Groups

1) Right click the Add-On Instruction folder, and select “New Add-On Instruction”
------ 3 Ungrouped Axes

e -

=-£5] Data [l Mew add-On Instruction. .. |

E@o L Import Add-0On Instruction. .
- =

2) Complete the “New Add-On Instruction” dialog box as follows, then press OK.

Mew Add-On Instruction x|
M ame: IETEIF K I
Dezcription: ﬂ Eepee] |

Help |
Type: I Function Block Diagram j
hdzjor helirar Extended Text
Rewizion: | 1 ﬁ IEI ﬁ I
Fevizion Mote: ||nitial Setup of the CTOF Instruction ﬂ
Yendar: Mone

[T Open Logic Routine

¥ Open Definition

3) The Definition box will now appear.

ControlLogix Level 2 — Page #120

4) Enter your description, then go to the “Parameters” tab.
f& Add-On Instruction Definition - CTOF ¥1.0

General" Ll:u:aITagsl Scan Ml:u:lesl Change Histl:uryl Help I

f e IETEIF

Description: i Eu:umferts Celziug b Fahrenheit.i ;I

Type: ¥ Function Block Diagram

5) Configure your parameters as follows. The CelsiusValue will be an INPUT parameter, and the
FahrenheitValue will be an OUTPUT Parameter. Be sure to turn on the VIS(visibility) property
for each of the parameters specified so we will have nodes to tie references to when the
instruction is added to logic.

General Parameters” | L-:ucalTagsI Scan M-:u:lesl Change Hish:uryl Help I

M ame Jzage | Data Type Diefault Style Feq| iz | Description
E nableln Input BOOL 1| Decimal [T | [T |Enable [nput - Sz,
EnableCut COutput |BOOL UDecimal | [T | [T |Enable Clutput - 5.
[FH-Celzius"alue Irput DIMT U Decimal F"F Incaming Celzius ...
| [F-Fahrerheitdalue |Output [DIMT 0| Decimal F_ ¥ | Outgaing Fahrenh...
E

6) Now, click the “Logic” button on the bottom of the Parameters screen.

Mave i | i [= e

Cata Tepe Size: 7 byte =]

7) Verify the project to update your tables. If you have errors, we'll work them out later.

Slslnl [F E)alal

ControlLogix Level 2 — Page #121

8) Right click your function block sheet to add an IREF (Input Reference), MUL (Multiply), ADD
(Addition), and OREF (Output Reference) as shown. This will be the logic which runs when
the Add-On Instruction is executed.

I

MUL_04

hlultiply
Sources

I:
[

SourceB

hAUL _I

[rest

0.0

ADD_04

Add

Saurces

O

SourceB

=

ADD _I

[rest

9) Now, we'll set up our parameters... Double click the “?”” on the IREF instruction, and browse to
the tag we created called “Celsius Value”.... Do the Same for the OREF instruction, but it will
point to the FahrenheitValue Tag.

Incoming Celsius
Walue

u]
CalsiusWalue O

1

mUL_01 ADD_01
UL | ADD |
hultiphy Add
0.0
Sources Dast [Sources [rest
SourceB T O SourceB

Cutgaing Fahrenheit
Walue

0.0
j—gi Fahrenheitfwalue

f

10) Now, we need to configure “Source B” for each instruction. Source B for the MUL instruction
should be 1.8, and Source B for the ADD instruction should be 32. Click the Elipsis on each

instruction to change these values (The three dots

(13

...) You can uncheck the visibility property

of each instruction for Source B because we will be using a static value that will not be

changing.

11) The MUL Instruction will be set up as follows:

Parameters"l Tag I

I Yig | Mame Drefault Type Dezcription

1 1 | ™ |Enableln 1|BOOL Enable Input. [f Falze, th...
| | [|Sourced 0.0|REAL Source & value

h Sourcep 1.6 REAL Source B value
o)r Enable0ut 0|BOOL Enable Output.

10| W |Dest 0.0(REAL Dest value

ControlLogix Level 2 — Page #122

12) And the ADD instruction will be configured like this:

F'arameters“l Tag I

Wiz | Mame Drefault Type Dezcription |
| | [T |Enableln 1|BOOL Enable Input. If Falze, th...
| | W |Sourced 0.0/REAL Source & value

(BT Sourceb 32 |HEAL Source B value !
0| [[EnableOut 0|BOOL Enable Output.
0| |Dest 0.0(REAL Dest value

13) Be sure to save your work periodically to avoid loosing any work we've done in the event of a
power outage, or inadvertent shutdown of RSLogix.

14) Now, our instructions routine will appear as follows:

hALIL_01 ADD_01
UL ADD
Incoming Celsius _I _I
Walue hultiply Add
0 0.
Calsius\Walue [} Sources Crast [—] Sources [rast

Walue

Outgeing Fahrenheit

0.0
j—(:(FahrenheifvWalue |

15) We are ready to utilize the instruction. First, we must create a few tags that will send a value to
the instruction, and receive a value from the instruction. Go to the Controller Tag Database,
and create the following Tags (You must be in “Edit Tags” mode to create these tags)

[FH-valueT o5end

DINT

[F4/alueT cR eceive

DIMNT

&

16) Under “Monitor Tags”, enter a value into the “ValueToSend” tag. Later this value will be
converted, and the result will be stored into the “ValueToReceive” Tag.

[alueTaSend

100

[+ alueT o eceive

0|

ControlLogix Level 2 — Page #123

17) Now, we can create a new program routine to utilize our new instruction. Right click on the
MainProgram, and add a new routine called “Convert” as follows: (Be sure to create it as a
function block for this example).

frew roune

Xl
M arne: IEn:nnvert
. Description: ;I Cancel |
' [~
Tupe: I Function Block Diagram j Help |
!:lr: ELDag;::m IEaJ M ainPrograr j

[~ Open Foutine

18) Now, open the MainRoutine of the MainProgram, and add a “JSR Convert” instruction as
shown:

=R
Jump To Subrautine
Foutine Mame convert

19) Now, open the routine you just created, and add an IREF and and OREF to your sheet. The
IREF will contain our ValueToSend tag, and the OREF will contain our ValueToReceiveTag.

100
alueToSend [\:C WalueToReceive |

ControlLogix Level 2 — Page #124

20) The next step is to add our CTOF instruction we created. Right click your sheet to add the
element. The CTOF instruction will be in the Add-On folder at the bottom of your list.

i ame | Diescription

Timer/Counter
Compare
Compute/tath
M oveLogical
Program Control
Trig Functions
Advanced Math
tath Conversions
Add-On
L+ il

Cornvertz Celzius to Fahrenhett,

[

21) Draw your links from the IREF and to the OREF as shown. No other configuration for this

instruction is necessary.

Conwerts Celsius ta
Fahrenheit.

CTOF_04
CTOF

i

Converts Celsius to Fahrenheit.

Celsius\alue

alueToSend O

100 u]

FahrenheitYalue j—\:li YalueToReceive

22) Download your work. Verify that when you change a value in your ValueToSend, the
ValueToReceive changes to the converted value.

Converts Celsius to
Fahrenheit.

CTOF_04
CTOF

|

Converts Celsius to Fahrenheit.

100
Celzius\Walue

alueTaoSend o

FahrenheitWwalue j—[l< WalueToReceive —

ControlLogix Level 2 — Page #125

23) Since we don't have any logic at this point to populate the “ValueToSend” tag, you can
manually change the value from Controller Tags.

M ame & | W alue € | Force Mazk € | Style |
[F-Local5:C
[FH-Local 5l
[F-Localk:C ..t ol
[F-LocalB:l o1 fo.ad
[F-LocalE: 0 ... o
[+ alueT o5 end - 50 Decimal
| |[#alueToReceive 122 Decimal

ControlLogix Level 2 — Page #126

ControlLogix Level 2 — Page #127

Indirect Addressing

Indirect addressing allows you to have a variable address. Although this can save much time and
memory while programming, indirect addressing can be difficult to troubleshoot if you are unfamiliar
with the system.

In this example, we will create a fault log. Each time a fault occurs, we will log the time and date to
the NEXT element of the fault log array. An Array is simply a group of elements which all have the
same name, but I unique index number. In the PLC-5, for example, the Timer file (T4) was an array of
timers. Each timer had a different “Index” number, such as T4:0, T4:1, etc.

We will represent a fault with a simple switch. We will create the fault log as a two dimensional array.
The first element of the array will represent a fault number (We'll allow up to 200 faults).... The
second element of the array will log the time at which the fault log occurred, which will be seven
elements: Year, Month, Day, Hour, Minute, Second, and Microsecond. We will also need a pointer
that we can change to index us through the fault log, and a OneShot that will only log one time per fault
(instead of logging to the fault log every scan). The GSV command will be used to extract the time
from the system, and store this time to a temporary array that we can copy from later on.

1) First, Let's create our Variables. We'll just add these variables to the Controller Tag Database

as follows:
OneShaotBit gOaL
[#-Pairter DIMNT
H-FauliLog DINT[200.7]
[F-SuvstemnT ime DINT[F]
5

2) Next, we need to set up the GSV command to get the time from the system, and store this time
to the tag we just created. If you need to adjust the clock, you can do that easily from
Controller Properties.

(55N
et Syatem Value
Class Mame weallClockTime
Instance Mame
Attribte Mame LocalDateTime
Dest SystemTime[0]
0 &

ControlLogix Level 2 — Page #128

3) Now, we'll set up the logic as follows. You will need to manually type the destination of the
COP instruction because it is an indirect address.
1. When the switch is energized, the COP instruction will execute.
2. Since the value of the 'pointer' tag is currently 0, seven elements (the entire system time)
will be copied to FaultLog[0,0].
3. The add statement will then increment the pointer.
4. The next time a fault occurs, the system time will be written to FaultLog[1,0]...
5. The process repeats until the log file is full.

Swyitch .0
=Lacal:Sl Data[1].0= OneshotBit COp
] F [0S] Copry File
Source SystemTime[0]
Dest FautLog[Pointer 0]
Lencgth 7
ADD
Addd
Source & Pairter
0 &
Source B 1
Dest Pairter
0 &

4) Now you can download your work, and you will see the logic in operation. Each time the
switch is energized, the system time is written to a different area of the faultlog.

[=-FaultLag ... {3 | Decimal
+-FaultLog[0,0] 2008] Decimal
[FH-FaultLag[0,1] 2 D' ecimal
[+]-FaultLog[d.2] 4| First Fault -
[+-FaultLog[d.3] 7 o
[F-FaultLoglo,4] 3z Decimal
[F-FaultLag[0,5] L1 Drecimal
{+|-F ultlog[0.E] 648108 D' ecimal
F-FaultLog[T 0] 200 Decimal
[F-FaultLag[1.1] 2 D ecimal
[F-FaultLag[1.2] 4 Drecimal
H-FaultLog[1,3] 7| Second Fault
[+-FaultLagl1,.4] 33 D'ecimal
[+-FaultLog[1,5] 9 Decimal
\H-Faultlogl1 5] 61497 Decimal
[+-FaultLogl2,0 0 Decimal

ControlLogix Level 2 — Page #129

5) Now the only problem we have is that once 200 faults are reached, we would index past the
FaultLog file, and the processor would fault. We need to add some logic to prevent this from
happening. In this logic, we'll say that if the pointer goes above 198, reset the pointer to 0, and
reset the fault log. The FLL instruction will fill the fault log file with 0's. We'll also give you
the ability to reset the fault log with a switch. Add the logic as shown:

GRT —— O
Greater Than (&=B) Movee
Source & Pairter Source 1]
0 &
Source B 193 Dest Poirter
0«
awvitch 1 FLL
=Local Sl Datal1].1= Fill File: —
] [Source n
Dest FautLog[O,0]
Length 1400

6) The length of the FLL is 1400 elements because our FaultLog file is an array of 200 x 7.
Download your work, and verify the fault log can be cleared.

ControlLogix Level 2 — Page #130

FAL Instruction

The FAL instruction is very versatile. It can copy data from one file to another, copy data from a file to
an element, or an element to a file. The main purpose of the FAL instruction, however is to perform
math (or manipulate) the data as it is moved across to another file.

Here is what the FAL Instruction looks like in logic:

FaL
— File ArthiLogical —En—
Control
Length
Pozition
Mode
Dest

—ER—

e e

T
Expression 7

The CONTROL element is just a workspace for the FAL to perform it's job. This workspace keeps
track of the status of the FAL instruction.

The LENGTH is the number of elements in the file you are operating on.

The POSITION indicates the progress of the FAL instruction as it operates on the file. The instruction
is considered done (DN bit set) when the position equals the length.

There are three MODES of operation:
ALL — All calculations are performed in the current scan.
INCREMENTAL - One element is operated on for each false to true rung
transition.
NUMERIC — A certain number of elements are operated on per scan once the
rung is true.

The DESTINATION is where the data is stored after the expression has been executed. This can be in
the form of a single element such as Unit4Temperature, or an array such as UnitTemperature[0] —

UnitTemperature[199]

The EXPRESSION is the 'formula' used in the calculation.

ControlLogix Level 2 — Page #131

First, we need to declare a CONTROL element. We are going to declare this in the Controller Tag
database, although it could be used as a program tag as well. Recall that the control element stores
information about the status and progress of the FAL instruction.

DEEET CONTROL
T FALControl LEN DINT
- FALControl POS DINT

FALControlEN BOOL
FALControlEL BOOL
FALControlDN BOOL
FALControlEM BOOL
FALControlER BOOL
FaLControl UL BOOL
FaLControlIN BOOL
FALControlFD BOOL

You will notice when you expand the FALControl element, there are several sub elements:

EN — This is the ENABLE bit. It is set when the rung goes from false to true.
In INCREMENTAL mode, this bit will follow the rung condition.
In NUMERIC mode, or ALL mode, the EN bit remains set until the instruction is finished.

DN — This is the DONE bit. It is set when the instruction completes all operations. In NUMERIC
mode, the DN bit is reset when the instruction is complete if the rung is false.... Otherwise, the EN bit
will reset the DN bit when it goes true again.

ER — This is the ERROR bit. It is set if the instruction generates an overflow, and the instruction stops
it's operation. If this happens, the ER bit is reset by the ladder logic. The POS will indicate the
position of the value (in the file) that caused the overflow condition to occur.

LEN — This is the length of the number of elements you are operating on.

POS - This is the position of the FAL instruction as it operates through the file.

Other bits such as (EM) Empty (EU) Queue (IN) Inhibit (FD) Found, and (UL) Unload are not used
for this particular instruction.

ControlLogix Level 2 — Page #132

Let's make it work

In this example, we are going to take 10 elements from an Array called Celsius, and convert them all
from Celsius to Fahrenheit, The result will be stored into an array of 10 elements called Fahrenheit.

1) First, let's create a routine that we are going to use just for FAL calculations (Right click the
MainProgram and add a routine called “FALRoutine” as shown:

=-£5 Tasks

=4 MainTask

EIC§J MainPrograrn
[Program Tags

2) Next, we need a way for this FALRoutine to execute, so we'll go back to the MainRoutine, and
create a JSR statement that will instruction the processor to execute FALRoutine.

JSR
Jump To Subroutine: —
Foutine Mame falroutine

3) Now, let's create the tags we need in the controller tag database to make this work.
1. Celsius as DNT[10]
2. Fahrenheit as DINT[10]
3. FALControl as Control

[|F-Celsius DINT[10]

[|#-Fahrenheit DINT[10]

[|#-FALControl COMTROL
|

ControlLogix Level 2 — Page #133

4) Now let's add the FAL instruction into the FALRoutine as shown. You will notice we are using
Indirect addressing because the FAL instruction does not automatically index the position. We
have to use indirect addressing to change our position within the file as the FAL instruction

executes.
Local 5l Data.0 Fal
] F File &rithiLogical —Fh—
Cortral FalZontrol
Length 10 —Dr—
Position 0
Mode ALL —ER»—
Dest Fahrenheight[F AL Control OS]
0
Expression Celziuz[FALContral POS]* 8+32

5) Now, go back to the controller tag database,and open your Celsius and Fahrenheit Arrays.
When you place a value in the Celsius array, it should be converted to Fahrenheit, and stored
into the Fahrenheit Array when you throw switch 0 to activate the FAL instruction.

[=]-Celziuz {oodd
- Celsiug[0] [o
- Celsius[1] lLoo

[=]-F ahrenheit fo..0
+]-Fahrerheit]0] {32
] Fahrenheit{1] (212

ControlLogix Level 2 — Page #134

Working with User Defined Data Types

A User Defined Data type allows the user to create his own data structure offline. To understand user
defined Data Types, you must first understand pre-defined data types. In the PLC-5, T4:0 was a
variable with the timer data type. T4:0 contained several members: T4:0.ACC, T4:0.PRE, T4:0/DN,
T4:0/EN, and T4:0/TT.

In ControlLogix, a variable such as lubedelay can be created, and given the data type of “Timer”. Once
this assignment is made, the variable “lubedelay” can be expanded to reveal all of it's components:
lubedelay. ACC, lubedelay.PRE, lubedelay.DN, lubedelay.TT, and lubedleay.EN. All of these variables
are updated by a timer instruction in logic.

The timer object is always on the 'menu' as a pre defined data type, but you don't have any timers by
default. You have to set up a variable in the tag database, and assign that variable the timer data type.
You would now have a timer.

Instead of using the data structure of a timer, you may want to create your own data structures. For
example, you may want to create a data type called 'TankAlarm', and have the alarm data type consist
of some members such as HighLevel, and LowLevel.

Now any tag you assign a TankAlarm data type will inherit both the HighLevel and LowLevel
members.

Data structures and data types are not directly usable by the logic. Setting up a User Defined Data type
merely puts an item on a menu. You don't actually have an instance of the item until you declare a tag
with your data type.

For example: Steak and Shake sells hamburgers (or steak burgers). Seeing the hamburger on a menu
does not allow you to utilize the product in any way until you order at least one instance of the menu
item. The same is true for the timer example we used earlier. The timer data structure is always
available, but you don't have any timers until you create a tag with the timer data type.

Let's take a look at the timer data structure to see what members it consists of, and then we will create
our own data structure for TankAlarms.

ControlLogix Level 2 — Page #135

Simple UDT's

In an open project, locate the Data Types folder in the controller organizer window. Under the Data
Types folder, you will find the Predefined data types. Expand the Predefined data types folder, and
double click TIMER.

EIS Data Types

Cﬁ User-Defined

- L strings

Notice the members of the Timer Data Structure. Any tag we assign in the tag database as a timer will
inherit all of these members.

B Data Type: TIMER 5 - 10| x|
M ame: ITIMEH
Description: ﬂ
b embiers: Data Type €
i ame [ata Tupe Style Dezcription
PRE DIMNT Decimal
ACC DIMT Decimal
EM BOOL Drecimal
TT BOOL Decimal
DM BOOL Decimal —
] I Cancel I Apply I i
4 I I » /}:

ControlLogix Level 2 — Page #136

When you create MyTimer with the timer type, the tag can be expanded to reveal all the components.:

Tag Mame o2 | Alias For Baze Tag Type
[=-MyTimer TIMER

[+-kuTirner. PRE CIMT

[+-buTirner. ACC DIMT
—tuTirmer.EM BOOL
—uTimer TT BOOL
—uTimer. DM BOOL

Next, we are going to create a User Defined Data structure called “TankAlarm™. This data structure
will have two members: HighLevel, and LowLevel.

Right Click on the User-Defined folder under Data Types, and select “New Data Type”.
EI'S Daka Tvpes

----- |ser-Define: | I |

Eﬁ Strings Mew Data Tvpe. ..

The name of this data type will be TankAlarm. The two members, HighLevel, and LowLevel, will
each have a bool data type.

M arne: IT ankdlarm
Dezcription: Alarmz for Tanks ;I
Members: Data Tepe Size:
Mame Diata Tope Style Dezcription
HighlLewvel biool Decimal
Lowlevel biool Decimal
*

ControlLogix Level 2 — Page #137

Now that “TankAlarm” is an available data type, we can now create an instance of this data type in the
tag database.

In this example, I created a tag called MyTank, and gave it the TankAlarm data type. MyTank
inherited the members of the TankAlarm data type. We can now have XIC's and OTE's in logic that
use MyTank.LowLevel, and MyTank.Highlevel variables.

[=]-+uT ank, Tankalarm
— by T ank. HighLewvel BOOL
by T ank. Lowlewvel BOOL

Here is an example of what logic might look like to populate these bits:

Local:a:l.Data.0 My Tank LowlLewvel
1E oo
1 L L
Locala:l.Datal hivTank. HighLewvel
1E
1 C

ControlLogix Level 2 — Page #138

Nesting UDT's

Additional information may be needed for MyTank. Status information may also be available. The
TankStatus data type will consist of three members: Level, Draining, and Filling. Let's go ahead and
set up this data type, then we will nest TankAlarm, and TankStatus members into a tank data type.
This will provide us with all the information we need about MyTank all in one area. Lets do this one
step at a time.

First, Create a UDT for TankStatus as shown (Right click the User-Defined folder and select 'new data
type'):

Manme: ITankS batuz

Dezcrption: Status information for tanks ﬂ

Members: Data Tope Size:

M arne Diata Type Style Dezcription
Level DIMT Decimal
Fillirg BOOL Decimal
Draining BOOL Decimal
*

Notice that Level is an actual value, so it will have to be DINT. Filling and Draining are either true or
false, so their type is BOOL. Apply your changes.

We can use the TankStatus Data type in the tag database as it is, but we would have to create a separate
tagname, which is not good. Remember our goal is to organize data.

To have all the data under one tagname, we are going to have to create another data structure that has
the members TankStatus and TankAlarm. Each of those data structures have their own members.

ControlLogix Level 2 — Page #139

Create the data structure as shown:

I arne: IT ank,
Cezcrption: Crata Structure for all Tanks ;I
Members D ata Type Size:
M ame Data Tepe Style Dezcription
alarms TankAlarm
zhatuz TankStatuz
*

Now go to the Controller Tag Database, and create 3 tags, Tank1, Tank2, and Tank3 each having the
data type of 'Tank'. Look what happens!

[=-Tank1

Tank

[+]-Tank1.alarmsz

T ankalarm

[+]-Tank1.status

TankStatus

[=-Tankz

Tank

[+]-T ank2. alarms

T ankaAlarm

[+]-T ank2. statuz

T ankStatus

[—=-Tank3

Tank

[+]-T ank.3. alarmsz

T ankAlarm

[+]-T ank.3.status

T ankStatus

All three Tanks had the 'Tank' data type. (Recall that the tank data type consisted of two members,

alarm and status.

ControlLogix Level 2 — Page #140

Remember also that alarm and status had their own structures as well. Expand the alarm and status
tags.

[=-Tank1
I_I:_I-T ank]1.alarmsz
—T ank1.alarms. HighLewvel

—Tank1.alarmz. Lowlevel

Tank1. statuz
[+-Tank1 statuz Level
—T ank1.statuz. Filing

=

—Tank1.zstatuz.Ciraining

All the data for each Tank is now well organized. These tags should then be incorporated into the input
and output data mapping routines.

ControlLogix Level 2 — Page #141

Producer/Consumer Model

In older PLC systems, such as the PLC-5, a message instruction had to be executed in order to get data
from one processor to another. Although this worked very well, there was seldom a guarantee when
data would arrive at it's destination, nor would data be transferred if the processor was in program

mode.

With the Producer/Consumer model, the transfer of data between processors takes place without any
logic, and the user sets the RPI (Requested Packet Interval) for the rate at which data should be

updated.

The producer consumer model is very easy to understand, and to trace where data is coming from.

The Producer/Consumer model can transfer data between tags which have a DINT data type, an array,
or a User-Defined Data Type (UDT's)

The Produced Tag

The producer has the easy job. In the Controller Tag Database, a user simply creates a tag, and marks
it as produced. In this case, MyProducedTag is a DINT. The 'P' in the left-most column makes the tag

produced.

When we mark a tag as produced, we are simply allowing the tag to be served to consumers. We can
populate this produced tag through logic, and the consumed tags in other processors will receive the
data we place into the produced tag.

Controller Tags - RickysProject{controller)

Scope: IHiu:kysF'rDiect[chtrcj Shgw:lShDW Al

j Sark: ITag Mame 'I

|P

Tag Mame o

Aliaz For

Baze Tag

Type

I

[F-tpProducedT ag

DIMNT

* |

ControlLogix Level 2 — Page #142

If you were to right click on the tag, and go to the tag's properties, we would have a few more options:

General | Connection I

Mame: b yProducedT ag

D escription: ;I

e o

Tag Tupe: = Baze

i Aliaz

" Produced

" Consumed
Drata Type: |D|NT | Cofigure... |
Scope: IFEiu:k_l,lsF'ru:uie-:t
Shyle: I Drecimal j

If we click on the 'Connection' tab, we can set the maximum number of consumers which are allowed
to connect to the produced tag. The allowed values are 1 to 256. You can also send event triggers to
consumers using the IOT instruction in logic.

General Connection® |

Maximurm Consumners: |4 =

-

[Programmatically [|OT Instuction] Send Event Trigger to Consumers

ControlLogix Level 2 — Page #143

The Consumed Tag

In the previous few pages, we discussed how to set up a tag in the producing processor. Now we will
go to the program which resides in the processor which will be consuming data from this produced tag.

Setting up a consumed tag involves an extra step. First, we build a path to the processor where the tag
is being produced. This is done in I/O Configuration. Then the consumed tag can be created.

Step 1: Building the path to the producer.

In the I/O configuration tree, we will have to build a path to the processor where the produced tag
resides. First, we will have to establish a connection to our local Ethernet or ControlNet module. Next,
we will have our local communication module connect to a communication module in the chassis
where the produced tag resides. Last, we must tell the communication module in the remote chassis to
connect to the processor which is producing data. Look at the diagram below:

First Connection

|

E ol are here

LTasL L
— 1AN3-95L L

Ethernet Switch

Zecond Connection

L7951

18mM3-9524 1

[

Originating Procezsor (Where 'MyProducedTag' resides))
Third Connection

ControlLogix Level 2 — Page #144

This connection is made under I/O Configuration.

First, right click on the I/O Configuration folder to connect to the local communication module if it not
already set up.

3

m Mew Module, ., ||

Be sure to select the communication module you will be using For this example, we are using a 1756-
ENBT module.

Type: 178E-EMBT A

Type | Dezcription
1756-0ME 1756 DeviceM et Scanner

You can get the major revision from a web browser, RSLinx, or from the label on the side of the
module if the label is correct. Our module is version 2.4 (2 is major, 4 is minor).

Select Major Revision |

Select Major Rew for 1756-EMBT A4 Module
Profile being Created:

Maior Revision: |EX ~ |
] I Cancel | Help |

ControlLogix Level 2 — Page #145

We named this module local _enbt. This module resides in slot 3, and the IP address is 192.168.0.97.
The minor revision was 4. (Adjust these settings for what you are using at your own station)

Type: 1756-EMBT A4 1756 104100 Mbps Ethemnet Bridge, Twisted-Pai Media

Yendor: Allen-Bradley

Farent: Local

Marme: IIDI:aI_Enl:lt Addrezs / Host Mame

D escriptior:]| 1P Addess | 192 168 . 0
;I " Host Mame: I

Slat: a _I

R evizian: IE_ I _I? Electronic Keying: IEnmpatiI:uIe Maodule j

When finished with this step, your local communication module will appear in the I/O configuration
similar to the image shown below:

{23 10 Configuration
o B (-] 1755 -ENET (A local_enht

Second, we must add the communication module of the remote chassis to the I/O Configuration. We
must right click on our local communication module, and tell our local communication module to
connect to the remote communication module as shown:

'S I,I'O Caonfiguration

Wﬂm
m Mew Module, .. ||

We are connecting to another 1756-ENBT module.

Type Dezciiption
175E-ENBT

Again, the remote ENBT module is version 2.4, so the Major Revision is 2.

Mo Fevision: [~ |

ControlLogix Level 2 — Page #146

We will name the module remote_enbt. It has the IP address of 192.168.0.96. It is in slot 3 of a 7 slot
chassis. We choose rack optimization for the comm format, so data from all modules can be received
through a single connection. The minor revision is 4. Adjust your settings as necessary for your
station.

Type: 1756-EMBT 44 1756 10100 Mbps Ethemnet Bridge, Twisted-Pair Media

Wendor: Allen-Bradley

Parent: lozal_enbt

M ame: Iremute_enl:nt Addrezz £ Host Mame

D escription: d % |P address: I 192 . 168 . O . 96
j " Host Mame: I

Carnrn Faormat; IFEau:k O ptimization J

Slat: I _Ij Chasziz Size: I? j
R evizion: |2_ |4 _I? Electronic Keying: IEumpatiI:ule b adule j

When finished adding the remote enbt module, your I/O configuration will look similar to the image
below:

| 1O Configuration
-] [3] 1756-ENBT/4 local_enbt
i ﬂ [3] 1756-EMBT /& remote_enbk

Third, we must make a connection to the processor from the remote enbt module.

Right click the remote enbt module, and we will add a new module as we did before.

45 [fO Configuration
= B [3] 1756-EMET A local_enbt

...... m Mew Module, ..

Most of the stations have the 1756-L1 processor. Be sure to select the type of processor that resides in
the station which is producing the data.

Type Desu:nptu:un

1756-L1

ControlLogix Level 2 — Page #147

Select the revision level of the processor you are connecting to. The version was 13 when this
document was created.

Select Major Revision |

Select Major Bew for 1756-L1 Module Profile
being Created:

Major Fevizion: |1 -

| (] I Carcel | Help |

The processor is named remote processor and resides in slot 0.

Type: 1756-L1 ControlLogiz5550 Controller
Yendor: Allen-Bradley
Mame: Iremn:nte_pn:n::ess::nr Slat: 1] _I
Dezcription; ;I
=l

Rewvizion: Iﬁ I'I _Ij Electronic Keying: I j

When finished, your I/O Configuration will appear similar to what is shown below:

-5 1{0 Configuration
= Bl [3]1756-ENBT/A local_enbt
= Bl [3] 1756-EMBT/A remate_erbt
e ﬂ [0] 1756-L1 remoke_processor

ControlLogix Level 2 — Page #148

Step 2: Creating the consumed tag.

Now that we have a path to the processor which is producing the tag, we can create our consumed tag.

First, go to the controller tag database, and click 'Edit Tags'.

Controller Tags - RickysProject{controller)

EI'S] i Projer
i Scope: IFIickysP'ru:uieu:t[u:Dntrc vI Shgw:ISh':'W Al 'I

i Controller Fault He
7 Power-Up Handler F |[Tag Name & | Aliaz Far Base Tag
=45 Tasks [+]-remate_enbt:|
E% MainTask [F-remate_enbt:0
% MainProgram *|r

- 3 unscheduled Progr

EI---B Mation Groups
A | » [N Monitor Tags ‘Edit Tags)

| Ungrouped Axes

Second, we will create a tag called 'MyConsumedTag'. Leave it as a DINT.

& Controller Tags - RickysProject{controller)

Seope: IHickysPrniect[cnntrcj S IShDW Al LI Sark: ITag Mame 'I

P | Tag Mame & | dliaz For |Baze Tag | Twpe
AB17RE_EMET_FSLOT::0

&B:1756_EMET_7SLOT:0:0
DIMT

[+]-remaote_enbt:|
[+]-remote_enbt:0
5 |r MuConsumedT ag

* |

ControlLogix Level 2 — Page #149

Third, right click on the tag, and choose 'edit tag properties'. The tag type is consumed. From the Pull-
Down tab you can select remote processor as the producer. (This is the processor we connected to in
I/O Configuration. The name of the tag in the remote processor is called MyProducedTag, and is a
DINT. The RPI is fine for this exercise, but if you wish to conserve bandwidth on the network, the RPI
can be increased so the tag will update less often.

Marne: IMyEnnsumedT ag d

Diezcription: Cancel

di

Help

-
K _>I_I
Tag Type: " Baze

" Alias
i Produced I'I :ll CORELIMENS

¥ Conzumed

Froducer; Iremnte_prncessu:ur j RPI [ms):
Remaote =1
Tag Name IMyPdeucedTag |2.EI =
Data Type: IDlNT | Catfigure... |
Style: I Decimal j

You are ready to download and test your work.

ControlLogix Level 2 — Page #150

ControlLogix Level 2 — Page #151

ControlLogix Messaging

The producer consumer model is very efficient for transferring data between processors, but if the data
transfer does not need to occur at periodic intervals, you may be able to conserve network bandwidth
using the message instruction. Using the message instruction, data can even be received (or sent) from
another processor, even if that processor is not present in the I/O Configuration tree.

For this example, we will set up a message instruction that will read data from another ControlLogix
processor, and store that data in a memory location in our own controller.

Below, you can see the path that we will take to connect to the target processor. Once, the connection
i1s made, msgInbox will then receive data from msgOutbox each time the message instruction is
executed. Data actually flows in the opposite direction of the communication path for a data read
because the connection has to be made first, then we can begin receiving data from the target.

192.165.0.65
17a6-L1 1736-ERBT

>

maginkbo

msgouthox h

1756-11 1756-EMET

192.165.0.57

ControlLogix Level 2 — Page #152

1) First let's set up the memory locations we will be using for this transfer. We will create three new
items in the controller tag database:
1. msgOutbox as DINT
2. msglnbox as DINT
3. msgControl as message

msgOutbox will be the memory location that another controller can read from. This tag has nothing to
do with our own message instruction, but we will populate this tag with data, so the station reading
from your controller can test their connection. You will be reading the msgOutbox tag of another
station later in this exercise.

msglnbox is where the data will be stored within our own controller. After the message instruction
executes, whatever data was stored in the msgOutbox of the target processor will appear in the
msglnbox tag of your own processor.

msgControl is simply the workspace for the message instruction to be able to operate. It stores
information about the message instruction such as when it is enabled, waiting, or done.

2) There are several ways we can add these tags. You can right click 'Controller Tags' at the top of the
controller organizer window, and add a new tag, or you can open the controller tag database, and
add the tags to the bottom of the spreadsheet. Note: You must be in 'Edit Tags' mode to add tags to
the controller tag database. This can be done either on line or offline. Add these three tags to the
controller tag database as shown:

Soope: Itest[cnntmller] j Shgw:ISHDW-‘i"-" j Sart: ITag Mame

I F|TagMame ¢ |4liasFor |Bas | Tepe Style Dezcrnption |
JF [F-meginbox CIMT Decimal | Data From Remote PLC
IF [*F]-rmegOutbox DIMT Decimal |Data ln Remaote PLC

[*#]-mzgControl MESSAGE Control Block,
¥\

ControlLogix Level 2 — Page #153

3) Next, add a self-running timer as shown. This timer will be used to trigger the message instruction.
You will have to declare msgTimer as Timer. You can do this by creating another entry in the tag
database, or right-click msgTimer once you've typed it into the timer instruction, and then select
"new msgTimer' to declare the new variable for use in logic. This procedure will make the entry in
the tag database for you.

mzgTimer DR TR
4/ [Timer on Delay R —
Timer magTimer —Dh—
Preset 300
Accum 0 #|

Notice the preset on the timer is 500. Because the time base for ControlLogix is milliseconds only, the
preset for this timer is half of one second. We'll be using the DN bit from this timer to trigger the
message instruction.

4) Next, enter the following rung of logic for the message instruction. All variables in this rung have
already been declared.

msgTimer Dkl W= G
4/ Type - Unconfigured T —
Message Contral magCantral |Z| —ih—
—ER—

5) Click the ellipsis to configure the message instruction. The ellipsis is the 3 dots next to the control
element

6) The message instruction is very versatile, and there are a lot of options. The message instruction can
be used to initiate block transfers, read or write module status, and even reset an electronic fuse on
an output module. For this exercise, we are just interested in a CIP data table read. CIP (Control
and Information Protocol) is the means by which ControlLogix processors natively exchange data
through the message instruction.

Message Configuration - msgControl

Caonfiguration” | Enmmunicatiunl Tag I

Meszage Type: IEIF‘ Data Table Read j

ControlLogix Level 2 — Page #154

7) Next, you are asked for the source and the destination element. The source is the name of the tag
from which we are getting data, and the destination is the memory location in which this data is to
be placed. Recall that we are getting data from the msgOutbox tag of the remote processor, and we
will be placing that data into our own msglnbox tag. The length will be just one element.

Cotfiguration” | Enmmunicatiunl Tag I

Meszage Type: CIP Data Table Read

Source Element; II'I'ISEI':I utbo

Mumber Of Elementz: |1

D estination Element: II'I'ISE"”':'DH LI

8) We have told the processor what the source and destination tags are, however, this PLC could reside
on a network of many ControlLogix systems. We have not yet specified what path the controller
needs to take to connect to the msgOutbox tag. Go to the 'communication' tab, and we'll discuss
how to configure the communication path.

Message Configuration - msgControl |

Configuration® Enmmunicatinnl Tag |

Path: I Browsze. .. |

Eommumization kethod

@ICIP C1DH: Charriel I]' Destination Lik: Il:I 3:
IR A fith R T = o ; 0 =
. & ouree |0 S ounce Link: I 3 Destination Made: I 3 [@ztal]

¥ | Conmected ¥ Cache Connection: &

ControlLogix Level 2 — Page #155

1756-L1

192 .165.0.63
1756-EMBT

maginko

>

“ A
[m]
]
=
Lo]
fan]
(]
E 3
1736-L1 1756-ENBT
192 16057

9) Look again at our communication path:

From our PLC (Top left), we must first connect to the backplane. The next step would be to connect to
our own Ethernet module (or ControlNet if you have a ControlNet connection). Next, we will specify
what our exit port is (we will come out the front port of the Ethernet module. Next, we specify which
IP address to connect to on the Ethernet network (or ControlNet node), then we go to the backplane,
and then connect to the processor in slot 0. The chart below will help you to determine what the
connection path will be (alternate between step A and B):

Step A: Step B:

To get to: Specify: For module on: Specify:

The Backplane 1 The Backplane Slot #

DF1 Port (Of controller) 2 DF1 Network DF1 Address
ControlNet Port of CNB 2 ControlNet Network Node #
Ethernet port (of ENBT) 2 DH+ Network Node #

DH+ port CH A (DHRIO) 2 Ethernet Network IP Address
DH+ port CH B (DHRIO) 3

Note for step B you can also use the following formats: address:port, DNS name, or DNS

name:port)

Using this chart you will come up with the path 1,3,2,192.168.0.57,1,0

ControlLogix Level 2 — Page #156

10)How did we get this path?

1. From the processor you are programming, you must first choose '1' to get to the backplane in step
A.

2. Step B tells us to specify the slot number we need to go to next. This would be the slot # for the
1756-ENBT module. (Slot 3)

3. Go back to Step A. Since we are now on-board the ENBT module, you must specify a 2 to get
out the front port of the module.

4. Back to Step B... Since we came out of port 2, we are now on the Ethernet network, so we must
specify which address to go to. For this example, the address was 192.168.0.57.

5. Go back to Step A. Now that we are on-board the Ethernet module, specify 1 to get to the
backplane.

6. Back on Step B we specify which slot to connect to. That would be the processor in Slot 0.

Note: If the target processor was already in your I/O Configuration you could just browse to the
processor.

11)You path will appear as shown

Message Configuration - msgControl E3

Canfiguration” En:nmmunin::atin:nn"l Tag I

Path: |1 2.2.192168.0571.0 Browse. . |

1.3, 2192168057, 1.0

Earmmumication M ethod

CF € 0H+ Channel I j' Destination Link: II:I 3:
¢ CIFSwith Sounce Link: IEI 3: Destination Made: ID 3: [Diztal]

Saurce |0

¥ | Conmected ¥ Cache Connections &

12)Apply your changes then press OK.

13)Download to your processor, and put the processor into 'run' or 'remote run' mode.

ControlLogix Level 2 — Page #157

14)In the Controller Tag database, populate the msgOutbox tag with a value. You must be in 'Monitor
Tags' to inject a value, then press enter.

Tag Mame & | Malue € | Force Maszk € | Shyle
[+]-mzglnbox 0 Decimal
[+]-meg0utbos - 465 Decimal

[+]-rzgControl

[+]-mzgT imer

15)If your MSG instruction is working properly, and if the msgOutbox tag is set up properly in the
remote processor, you should receive this value in your msglnbox.

Tag Mame o

Walle 3

Force Mazk, *

[+]-mzglnbox

{ sas

[+]-meg0utbos

465

[+]-rzgContral

[+]-rzg Timer

16)Open the control element for the message instruction, and you will see the the status bits change as
the MSG instruction executes. For a more detailed explanation of these bits, and error codes you
might find in this control element, refer to the help file in RSLogix 5000. (Not all status words are

shown below)

[=]-mzgContral

(...

H

H-mzgControl Flags

lag0Zsn

—mzgContral B

—mzgControl ER

—mzaControl 0

—mszgContral 5T

—mzgContral EM

—mzgControl. TO

—mzgControl EM_CC

| el I o s s Y

(|

H-mzgControl ERR

lag00aoo

(|

H-mzgContral EXERR

lag00o0a_o0aa0

=

S B S S e T

-

17) If you was using this for an application, you would write logic next to populate the msgOubox tag
with information you need another controller to receive (Using your own tag names)

ControlLogix Level 2 — Page #158

Initiating a message instruction from the PLC to read a value from a ControlLogix
processor.

In this example, the PLC-5 will initiate a message read instruction to read a value from the
ControlLogix processor. There are several steps involved in this process:

A: The PLC initiates a message read instruction to read a value from what it believes to be another
PLC-5 processor. The PLC-5 does not have the ability to directly read a controller tag in the
ControlLogix processor.

B: The 1756-DHRIO module must be configured to map any messages received to slot O (for this
example) because that is where the processor resides.

C: Since the ControlLogix processor does not support the PLC-5 data table structure, it must map all
messages from a legacy PLC/SLC file number to an array in it's controller tag database.

Slot 0 Hode 77

1756-
DHRIO

ha

/| |cne

When a request comes in for the
H¥ data file in ControlLogix, the
request is mapped to
'Myintegerarray’. PLC-5

1756-L1

H

_Tl?e PLC-_S _Belieues l':h" A
it i= receiving data (DH+)
from Hf:1 in
Cl:'nntrnlLug_lx and_ CH1B
will be placing this (RIO)
data in it"s own Hi:1
register.

ControlLogix Level 2 — Page #159

1) Inthe PLC-5, create a self-running timer.

T40 TON
- Timer On Delay - ENT—
LH Timer T40
Tirme Base 00l L DH—
FPreset 50
Domum]

2) Create a Control file for the message instruction to operate. Do do this, Right click on the data
file folder and create a new data file as shown.

File: IEI
Type: IMessage j
Name: [MSGCONTROL

Dezcription: IE:::ntr-:uI Elements for MSGE instructions

Elemments: |'| Lask:

3) Next, Right click on the N7 Data file, and go to the file properties. We are going to expand the
data table so we have a place for the message instruction to store data. Give yourself 10
elements. This should be plenty of space for future use in our classroom.

NamEpNTEGEH

Diezcription: I

Elements: I'I 1] Lazt [H7:0

4) Now, write the message instruction as shown. Then the Setup Screen will appear

T40 MEG

—F FeadWrite Message | —(EN 37—
D Control MGa:0 DN —
Setup Screen —E:ER:)—

ControlLogix Level 2 — Page #160

5) Next configure the message instruction similar to what is shown below:

Thiz PLC-5
Communication Command : |F'|_|: 5 Typed Read
Data Table Address :

Size in Elements :

Fort Mumber:

===
T =
=

— Target Device
Data Table Address:
Local DH+ Mode [Dctal):

Local / Remate :

6) Inthe RSWho Screen, locate the 1756-DHRIO module. Right click on the module, and go to
'Module Configuration'. Be sure the processor is set to Slot 0.

General I Fiouting Table Chatnel Configuration |
— Chanrel A
Charnel Type: DH+ Restore Defaults |
J Baud Fate: 576 kbp=

Maode Address: h

Contraller Slat:

ControlLogix Level 2 — Page #161

7) In the ControlLogix processor, we must create an array that simulates the N7 integer file in a
PLCS. Go to the Controller tag database, and add a tag as shown.

[F-bylntegendmay | |INT[‘I 0] |Decimal | T

ﬂm Moritor Tags & Edit Tags / 4 | llvl

8) .Next, this array must be mapped to file 7. When the ControlLogix receives a request for file 7,
it will then know to go to Mylnteger array to get the data. To set up this mapping, click Logic
on the menu bar in RSLogix 5000, then choose 'Map PLC/SLC Messages'. Set up the mapping
as shown, then download your work and ensure the logic is working properly.

PLCZ,3,5 / SLC Mapping

—PLC 3.5/ 5LC kMapping QK.
File: Mumker Tag Mame Cancel
7 hlyirteger Lrray

Pl

i’ Help

ControlLogix Level 2 — Page #162

ControlLogix Level 2 — Page #163

Trending

Trending is used to graph data over time. This can be either an analog signal or a discrete signal. You
are allowed 8 pens per trend chart with a maximum of 255 trending charts per project. This is a simple
procedure that will guide you through the creation of a trend chart in your project.

1) Right click the trends folder in the Controller Organizer Window, and select 'new trend'.

[
425 Dat |@ Mew Trend...

2) In the new trend dialog window, name your trend, and add a description. For this example, we will
leave the sample period at default. Click 'Next'.

Mew Trend - General

M ame: IM_I,IT rend
D escription; Trend for Local Potentiometer ;I
S ample Period: |1|:I :II Millizecond(z] j

ControlLogix Level 2 — Page #164

3) Choose the tag you wish to trend, then press the 'Add' button. You will notice your tag is now in the
list of tags to trend. Click Finish.

Scope:
I test [controller) j

AvailableT ags:

Tag Mame

|-y Timer

Tagz To Trend:

\

4) Next, Click the 'Run' button in the upper left corner of the trending chart.

Fiuri St | Errars... Log - | Logaing Stopped |Periadic 10 ms

My Trend Wednesday, March 16,

=
g.-

ControlLogix Level 2 — Page #165

5) You will see your chart start tracking. You will notice the chart runs very fast. You only have a
time period of 2 seconds currently being displayed from the left to the right side of the screen.

B |

|Lngging

Eglg

Stop | Emors... | Log - |
a7 My Trend Wiednesday, March 16, 200
7|9, 997
7,899
001
4 003
2,005
7

125336 Ph

1205333 P

[1253535 Phi]
[t [l [

6) We are going to change this to 2 minutes so the chart will run much slower. This will give us a
better indication of what the signal is doing over time. The X axis runs left to right (This is Time),

and the Scale runs from bottom to top. To reconfigure the X axis, right click on the chart, and
choose 'Chart Properties'.

Bun | Stop | Ermars... | Log - | |Lagging
pot[3,997 MyTrend Wednesday, March 16, 20] 1:00:33 PM
7la,9a7 _ 7393 |
7,999 v Scrall
& 00 Ackive Yalue Bar b
v Show Yalue Bar
4 003
| Zoom; Pan
E,DEI? Print Trend
1955 53 Create Snapshat. ., M

Chart Properties

ControlLogix Level 2 — Page #166

7) On the X tab, change the time span to 2 minutes. Then press Apply, and OK.

M ame I Generall Displa_l,ll Pens Y-.-“-‘-.:-:isl Templatel Sampling

— Chart time range
Start date |
- | Start Date and Start Time

I SRS —I are niot available when
Start time gorolling iz allowed. To

e — clear Allow Scrolling, use
|12'59'34 il —1 the Dizplay tab
Time zpan
2 = -

= b inute(z]

8) You will see your chart is now tracking over a 2 minute time period.

2 Trend - MyTrend =10 x|

Bun | Shop | Errors... | Log - | |Lagging

pot 3,993 MyTrend Wednesday, March 16, 200 1:04:26 PM
59,893 MEALTE

8,000
§,002
4,004

2 008
]

1:02:26 PR 1:04:26 Phd

id (& [d W [W 6 [

9) You will see the scale is not reflecting the full range possible for the analog signal. This is because
the chart defaults to automatic mode. It will take the minimum and maximum value and adjust the
scale accordingly. We will account for this in the next step.

ControlLogix Level 2 — Page #167

10)Right click on the chart, and go back to 'Chart Properties'

Fir | Stop | Errors... | Log - | |L|:|g|g|ing

pot [3.857 byTrend Wiednesday, March 16, 20] 1:00:33 Ph
7 a.aa7 . 73938 |

7,990 v Scroll
£,001 Ackive Yalue Bar »
v Show Yalue Bar
s Unda ZoamPan
E'DD? Print Trend
17:58:33 Create Snapshot,., -
Chart Prope

11)On the 'Y Axis' tab, you will notice 3 options. Automatic Mode is what we were running by
default. This adjust the scale based on actual data. You can also choose preset if you like, and enter
a different min/max value for each pen on the pens tab. The last option is to choose 'Custom'. This
will let us lock in our own values for this particular trend chart. We will use custom for this
example, and enter 0 as the minimum, and 10000 as the maximum. These values can be adjusted
based on the data you are getting from your analog source. Press Apply, then OK when finished.

t ame I Generall Displa_l,ll Fens I F-bis Templatel Samplingl

— Mirimum £ masimum value options

" Automatic [best fit bazed on actual data)
" Preset [use min/ma setting fram Pens tab)

— Minimum walue

' Actual minimum value o

— Maximum walue

' Actual masimum value ”1':”:":"] I

ControlLogix Level 2 — Page #168

12)You will see the scale on the chart is now locked in with the custom values you entered from the 'Y
Axis' tab.

13)By clicking anywhere on the chart, a value bar will appear. This value bar will indicate the exact
value of the tag at that moment in time.

ppmm,nnn ftyTrend wednesday, March16,] 1:15:49 P
1:15;
10,000 [4078
5,000
£,000
4,000
2,000
0

1:135:49 Phd 1:15:439 Pl

Ml W [0 [[0 M [H

14)If you click on an area of the chart, and drag your mouse, you will draw a box around a certain area
of the graph. When you release your mouse, you will be zoomed in on that particular area of the
chart. You will know you are in zoom mode by a magnifying glass on your mouse cursor.

ControlLogix Level 2 — Page #169

15)To get out of Zoom mode, right click on the chart, and Undo Zoom/Pan.

Scroll
Ackive Yalue Bar
v Show Yalue Bar

IUndo Zoom/Pan

16)Next, you must restart your chart by un-pausing the graph.

4,000
2,000
0

1:16:01 PM 1:15:01 PM

e e i [R T

Scroll

17)Y our chart should now be tracking. If you wish to change the color of your pen, Double-Click the
pen in the upper left hand corner of your chart. A pallet will appear. Choose your new color from
the pallet, then press OK.

(|
Fur | Stop | Ermrors... I Log - I ILoaaing ||

2|
My Trend '
||| 1':'-':":'3 - ; ::f Eti: ppy Dasic colors:
pot 5,000 I_I_I_I_I_.I_I_
£ 000 M .
4,000 .
2 000
]

1:20:21 Phi

M« cHNNENRENT N

Cuztom colors:

| Define Custom Colors &3 "

*W‘ ok) concel |

ControlLogix Level 2 — Page #170

18)You know know the basic method for setting up a trending chart. At this time, take a few minutes
to explore the other options you have for the trending chart. You can add more pens if you like
under the 'pens' tab. This will allow you to track more addresses. You can also change the width of
each pen, make them visible, or invisible, etc.... Try to change the color of the background.... If you
have questions, ask the instructor.

Marmne I Generall Display Fens |><-.-’-¥.:-:i$ I Y-.-'-‘-.:-:isl Templatel Samplingl Start Triggerl Stap Triggerl

— Pen Attibutes
T aghE =pr. Color izible Width Type Syl b arker kir
1 of 1 E e T R —— Mone 0.000000
4 b
Add/Configure Tags [elete Penfz]

— kultiple Pen Editz

izible Width Type Style b ark.er b ir R ER Eng. Unitz

Clear Selections | Apply to Selected Penls] |

(] I Cancel | Apply | Help |

ControlLogix Level 2 — Page #171

PID Demonstration -- ControlLogix

Terminology

Notice: This document is for the purposes of understand Proportional, Integral, and Derivative only, and how various
settings react based on a sample program. In no way does this document reflect how to tune PID loops at your location due
to the wide variety of plant applications. In no way are you qualified to tune a PID loop based solely on the information
contained in this document. Although I believe all documentation to be accurate, it is your responsibility to verify the
accuracy at the time you refer to the document based on overall changes in Industrial automation, the particular plant
example you are concerned with, and possible errors in this text.

CV — Control Variable — This is the output (control) from the PID loop. The control variable can be
used to control a valve or heating bands. The PID loop will continuously read the input (process
variable), and decide where to set the control variable to achieve the set point.

PV — Process Variable — This is the input (status) of the process. The process variable can read a tank
level or a temperature. The PID loop continuously reads this value to determine how much output to
provide to the process to achieve the set point.

SP — Set Point — The value of the process variable we desire to achieve. The set point can be described
in terms of a temperature we want to maintain, a tank level we desire, a particular flow rate, etc.

ERROR - The difference between the current value of the set point and the process variable. (In other
words, the difference between where we are and where we should be)

Proportional — Output that is proportional to the amount of error. For example: as the process
variable approaches the set point the output (CV) will decrease (or in some cases increase)
proportionally.

Integral — Repeats the proportional influence over time. For example: The longer we stay below the
set point, the more output is provided (or less in some cases). Integral is based on time.

Derivative — Output influence that is based on the rate of change of error. For example, if we have a
huge steam demand, a heating unit may start to cool down rapidly. At first, the error is not enough to
provide a large output based on proportional influence, and not enough time has passed for integral
influence to provide enough output to quickly pull the process back to the set point. Derivative is not
used in every process. For many processes, just the proportional and integral alone is enough to control
a loop.

Tieback — A value used to implement “bumpless transfer” when the loop is in manual mode. This
helps to ensure a more stable output when the loop is placed into manual mode.

ControlLogix Level 2 — Page #172

1) Inthe PID Routine, you will find an OFFLINE PID instruction. This instruction is not
currently controlling any process. We are going to use this instruction simply for the purpose
of seeing how the proportional controller alone reacts to error.

=550 Tasks

El% MainTask
Eﬂ; MainPrograr
=458 PID_TASK

w22 2| #3 #E w3

=% PID_PROGRAM

=101 x|

]

%

it

Thiz iz the OMLIME PID instruction designed to simulate a real

Process,
P

Proportional Integral Derivative —

PID OnlinePIC

Process Yariakle Actual_Temperature_PY

Tieback OnlineTieBack

PIC Master Loop
Imkuold Bit

Inbiald alue
Setpoint

Process Wariakle
Ot %

Control Yariakle Actual_Band_Command_CY

0

0

n}
100&
1210
oo«

Thiz is the OFFLIME PID instruction used to test various
values, and to monitor the responze of the PID instruction.

I

Propottional Integral Derivative
PID OfflinePIn ... |
Process Vatiable Offline_PY
Tieback Oifline_TieBack
Control Yariable Offline_CY
PIC Master Loop 0
Inhwalcd Bit 1
Imbkale] W alue 0
Setpoint 163530 &
Process ariable 1000 «
Cutput %6 0o«

ControlLogix Level 2 — Page #173

2) Click the ellipsis within the PID instruction to get to the setup screen, and you will see various
parameters to control the PID instruction. PV is the process variable. This is the value
returned from a sensor. We will also be discussing the CV (control variable) later in this
lesson. This is the output for the PID loop. Set up the status parameters as follows:

PID Setup - OfflinePID x|

Tuning | Configuration| Alarms| Scaling] Tag |

Setpaint [SP) hE383.0 =« Ml_a”;:'hh:;dis

Set Output: 0.0 =] [T Software Manual &

Output Bizs: ID-D j Rl

Tuning Conztants

Proportional Gain [Kpl |1.0 e Eﬁfg I;Eg‘iﬁg;ﬁ:gts
Integral Gain (ki |0.0 Hetis EF'E?LT;HD?D the PID

Derivative Time [kKd): ID-D j 3 Reset | 3

Setpaint [SP): 16383.0 P dlarm: High
Process Yariable: 100.0 Deviation Alarm: Lo
E rror: 0.0 Cutput Lirniting: M one
Cutpuk; 0.0 Error Within Deadband: Mo

ad

Tieback: 0.0 Setpoint Out of Range: ez
b ode: Bt FIC Initialized: Yes

| k. I Cancel Spply Help

ControlLogix Level 2 — Page #174

3)

4)

5)

6)

7)

You will notice that the Controller Gain (Kp) is going to be our proportional gain. Be sure this
gain is set for the value of 1 for our first experiment. Ki and Kd are your integral and
derivative timing values. We will work with these later.

Next we are going to change the SP to the value of 10. When you changed the Set point to the
value of 10, how much output did the controller provide? What is the error?

If we change the SP to the value of 30, how much output would you expect from the controller?
If the PV is still at 0, what is the error going to be?

Try changing the SP to 30 and see if you get the results you would expect.

Now lets imagine for a moment that the output we are providing is starting to cause things to
happen in the real world.... Such as a flow control valve that is starting to open. We are
continuously reading the flow rate from this system. The sensor that is measuring the flow rate
is calibrated in such a way that if we get a value of 16383 (20mA), then our flow rate is 100%.
The value of 0 returned from the sensor will reflect a flow rate of 0. We can find the
conversion from amperage to raw data in the manual for the analog module. Look at your PID
equation. What memory location represents the value being returned from the sensor?

Thiz is the QOFFLIME PID instruction used to test various
values, and to monitor the response of the PID instruction.
P
Proportional Integral Derivative
PID OfflinePID
Process Variable Offline_PW
Tieback Offline_TieBack
Control Yariable Offline_CW

PIC: Master Loop 0
Inhold Bit 0
Inhald alue 0
Setpoirt 100 &
Procesz Wariakle 00«
Outpt % 100 &

ControlLogix Level 2 — Page #175

8) Remember that the value we are sending to the flow valve is called the Control Variable. The
value being returned from a sensor which is measuring actual flow is called the Process
Variable. The process variable is going to show up in memory location Offline PV.
Remember how our sensor is calibrated. If we see the value of 16383 at Offline PV, then we
know we have 100% flow. We are going to simulate feedback from a flow meter by entering
the value 3113 into Offline PV. After entering the value of 3113 in Offline PV, go back to the
Setup Screen for your PID instruction.

Tag Mame £ | W alue & | Force Maszk L
Load Losszes n.n F
[+]-rnain_zirm_timer A -
[+]-Mid_Calculatio... 933 [
ITaT=0 Y il [
[F-Offline_F - 3113 [
|+-Lthne_Harp_ ... ool Tacal

9) With your Set point still at 30:

1.
2.
3.
4.

What is the PV reading?

What is the CV reading?

What is the ERROR?

Note that 3113 is 19% of 16383.

10) Increase Offline PV to the value of 3768 (23%). What happens to the output as the Process

Variable begins to reach the set point?

ControlLogix Level 2 — Page #176

11) Now lets see how a change in Kp gain causes the controller to react. Reset Offline PV back to
0, go to the setup screen for the PID loop in Ladder 9 and change the Kc Gain to the value of 2.
If you were to change the set point to the value of 10, how much output would you expect from
the controller?

12) Change the SP to 10. Did you get the value you expected to see?

13) What output would you expect at the CV if you change the SP to 30?

14) Change the SP to 30. Did you get the output you expected?

15) Change Offline PV to 3768 (23%). What output would you expect to see with a SP of 30?

16) Go back to the Setup Screen for the OFFLINE PID instruction in Ladder 10. Was your answer
correct?

17) Now you understand how the proportional controller alone works. The controller provides an
output that is proportional to the error. Think about how the proportional controller alone
works. Under normal circumstances, can the proportional controller alone bring the process
variable up to the set point?

18) Why or Why Not?

ControlLogix Level 2 — Page #177

19) Think about a heating process:

When you start the heating process, the controller will provide a very large output. As you approach
the set point, the output will decrease, until the output is zero at the set point. With an output of zero,
you are not putting any heat into the system. Due to ambient and load losses, the system will begin to
cool. Eventually, at some point below the set point, the amount of heat the controller is adding to the
system will be equal to the amount of heat being removed from the system. At this point your system
has reached steady state. The error between the steady state temperature and the set point is called the
OFFSET.

If the load is increased, then more heat is being drawn out of the system. The controller is no longer
providing sufficient output to maintain the previous offset. A greater error must be present in order to
increase the amount of heat the controller is adding to the system.

Now verify your answer to question 10. We will demonstrate this effect in the next example.

1 SETPOINT---------------- PV=SP (CV=0)
2 PV little below SP (CV =10)
3 PV much below SP (CV=20)

Position 1) If the PV was at the SP, then the controller is not adding any power to compensate for
ambient and load losses. Temperature cannot be sustained.

Position 2) If our PV was at this point, we have an error of 10, and therefore the processor is calling
for 10% power. Here we can reach steady state if the losses and loads combined are not taking out
more heat energy than we are putting into the system. If the load increased, we could not maintain this
temperature since our output can only be 10% at this position.

Position 3) If we was at position 2 and our load began to increase, we are taking more heat out of the
system than what we are putting in. The temperature begins to decrease. This causes an increase in the
error, and the controller will increase power. The system will reach steady state at a lower temperature.
This will be the temperature at which the controller is providing enough output to make up for the
increased load.

ControlLogix Level 2 — Page #178

20) If the Kp is increased, then the offset is going to be decreased because we can have the same
output with a smaller error. However, if Kp is increased too high, the controller will become
unstable and start to oscillate. Allen Bradley states in the Instruction Set Reference Manual
that a good rule of thumb used to set Kp is half the value which causes oscillations. This will
vary depending on the process.

21) In this example Kp is set okay. The PV overshot the SP, but did eventually reach steady state.
Since this is is an example of proportional control only. Steady state is actually being reached
at a lower temperature than the set point. The reason is because the temperature at which we
reached steady state provided the exact error we need for the proportional controller to generate
enough output to make up for losses and load. If Kc is increased, then the error will be
decreased, and the steady state temperature will be closer to SP.

| setpoint

22) In this example, we increased Kp too much. This caused the controller to become unstable and
start to oscillate. The minimum value for Kp to cause this type of oscillation is important for
calibration. In many cases, once you find the value of Kp that causes the controller to oscillate,
set Kp to half this value. The amount of time required for one complete oscillation is called the
“natural period” of a sine wave. This natural period will be useful when setting the integral and
derivative later on in this lesson.

23) In the next lesson, we are going to simulate a real world process. During this lesson you are
going to determine what is the maximum value we can use for Kp without the controller
becoming unstable.

ControlLogix Level 2 — Page #179

Proportional Gain Worksheet
24) To start this exercise, Open the PID Routine of the PID task.

=458 PID_TASK
. =8 PID_PROGRAM

25) Notice the ONLINE PID instruction in your ladder diagram:

Thiz iz the ORLIME PID instruction designed to simulste a real

process,
I
— Proportional Integral Detivative —
FID onlinePID [
Process Variakle Actual_Temperature P
Tiehack OnlineTieBack
Control Yariakle Actual_Band_Command_CY
PID Master Loop 0
Ikl Bit 1
Imbkale] W alue 0
Setpoirt Foo.o &
Process Yariahle 1740 &
Cutput %6 32106452 &

ControlLogix Level 2 — Page #180

26) Click the Elipsis to get to the setup screen within your PID instruction.

Setpoint ;
Process Variable ;
Errar :
Output = :
tode :
P &larm : (High
Deviation Alarm: [Positive
Output Lirniting :
SP Out of Range :
Errar ithin Deadband :

27) Set the Controller Gain (Kc) to 35

Reset Time [Ti) [mins/frepeathlo |

PID Initialized :
A/M Station Mode [aus |
Software /M Mu:u:le:

Status Enable (EM)
Froportional Gain [F.o): g

Drerivative Rate [Td] [mins]:D
Deadband :D

Cutput Bias & :D

Tieback % :D

Cet Output 2

28) Next, follow your instructor to open a project in RSView. RSView will be the Graphical User
Interface (GUI) for a heating process. The program in your PLC-5 will simulate the process.
You can find RSView by clicking Start|Programs|Rockwell Software|RSView32|RSView 32
Works. Once RSView is open, Click File, and then open the project called piddemo.rsv

29) Next, Double click on the + next to Graphics. The single click display. A list of the screens
available for this project show up on the right hand side. Double click the display called

pidscreensplc.

& PIDDEMO - Projeck

]

Edit Mode Fun fode

=101

[

Syztem
= Graphics
@ Library

D NOPIOCEss

ControlLogix Level 2 — Page #181

30) Click the Start button on your tool bar.

M RSYiew32 Works

File Edt Wiew Objects Arrange

8| Dle|u|
[¥el(=]{=]

31) Now we are set up for the next exercise. In this next exercise you are going to adjust the
proportional gain (Kp) to find out what value causes the loop to become unstable. Use the
following chart: For each row, go to RSLogix and enter the Kc value into the PID controller
in Ladder 8. Come back to RSView, With your load at 0, change the load on the system to
100%. Watch the response. Circle whether the controller is still stable after the transition, or
whether it has gone unstable. Then change your load from 100% to 0% and watch the graph in

RSView. Record the stability, then move to the next row.

Proportional Gain Kc

Load transition 0 to 100%

Load transition 100 to 0%

|‘35 Stable | Unstable Stable | Unstable
w 40 Stable | Unstable | Stable | Unstable
‘I‘ 45 Stable | Unstable | Stable | Unstable
‘H 50 Stable | Unstable | Stable | Unstable H

32) What value of Kp started causing instability during certain load transitions?

33) What is the natural period of the oscillations (in minutes)?

ControlLogix Level 2 — Page #182

34) Your Set point is 700 degrees. Record the steady state temperature under 0 load with your new
Kp. You will see that the steady state temperature is significantly below the set point.
That is because of the error required to generate enough output to make up for ambient losses.
Put your load at 100% and record the steady state temperature again. You will see
that it is even lower. Because we are taking more heat out of the system, we must have greater
error to generate more output.

35) We will compensate for this offset in the next lesson

ControlLogix Level 2 — Page #183

Integral Worksheet

36) You noticed in the last lesson that by using the proportional control alone, we cannot achieve
the desired set point, and sometimes cannot even get the PV close to the SP without the loop
becoming unstable. We need another component of the controller that can increase the output
to push the PV up to the SP. The integral controller controls proportional repeats per minute.
Therefore, the longer the PV stays below the SP, the more output is generated. The closer the
PV gets to the SP, the slower the output increases. Remember proportional control generates
an output simply based on the amount of error. The integral output takes this one step further.
If we still have an error, then we are going to continuously keep adding output ever so slightly

until we reach the set point.

37) The PID_ROUTINE has a PID instruction set up that will allow us to see the effect of the
controller alone when it is not attached to a real world process. Lets bring up RSLogix and
double click the PID _ROUTINE in the project tree.

=53 Tasks

=8 MainTask

Eﬁ; MainPrograr
=438 PID_TASK

. B PID_PROGRAM
Prograrm Tags
~[F8 PID_ROUTINE

ControlLogix Level 2 — Page #184

38) Notice the Process Variable is Offline PV. Before we start, lets set the Process Variable
Offline PV to 0 in the Controller Tag Database. If this were a real process, the feedback from
the process would show up in Offline PV. We will do this manually for this example.

T Thiz iz the OFFLIME PID instruction used to test various values, and to monitar
the response of the PID instruction.

FC
Proportional Integral Derivative
PIC OrfflinePID
Process Variable
Tieback Offline_TieBac

Control Yariahle Offline_CY

PID Master Loop 0
Inkold Bit 0
Inkbold “alues 0
Setpoint 100«
Process Variakle 0o«
Qi % 200«

Scope: IF'IDELX[!:Dntn:uller] j Shgw:ﬁ

Tag Mame & | Walue & | Fi
Load_Losses 0.0
[+]-mairn_zim_timer fouat
[+]-Mid_Calzulatio. . BZ95
[F]-Offlime_Ch 3277

b [+ Oifine_Pv 0

ControlLogix Level 2 — Page #185

39) Click ‘Setup Screen’ on the Offline PID instruction. Configure your PID instruction as
follows:

PID Setup - OfflinePID x|

Tuningl Ennfiguratinnl .-“-‘-.Iarmsl Su:alingl Tag I

Setpoirt (3P [10.0 e Ml—an;:'nh:;dis

Set Dutput: ||'| 0.0 Hex [™ Software Manual &
Output Bias: 0.0 Hex

Tuning Constants

Propartional Gain [Kp): I'I-':' :I € ﬁ:ueti? I;Eggﬁg;ﬁ:gts
Irtegral Gain [Kil: 0.0 He1ss Ei?ﬂpﬂ;gfngm the FID

Derivative Time [Kd): ID-U e Reset | -

Setpoint [SP]: 100 P Alarrn: Lo

Frocess Warable: 0.0 Dreviation Alarm: High

Error: 100 Clutput Lirniting: Mohe
Clutpuat; 100 Error YWithin Deadband: Mo

P

Tieback: 0o Setpoint Out of Range: Mo
b iode: Auto FID Initialized: Yes

ak. I Cancel Apply Help

40) Recall that from a previous lesson, using the proportional control only, if our error is 10%, and
the Controller gain is 1.0, then the output is going to be 10%. Here we have a condition where
our PV is below the set point and is not increasing (just like in our online heating process once
it reached steady state with proportional gain only).

ControlLogix Level 2 — Page #186

41) Change your Reset Ki to the value of .1. If you make a mistake in entering this value (such as
entering 1), enter 0 to clear the integral influence on the output, then enter .1 again.

PID Setup - OfflinePID x|

Tuning | Ennfiguratinnl .-'l'-.larmsl Scalingl Tag I

Setpoint (5P [100 =« Ml—an;aalnh:;df_s

Set Output: |12-5599935 :I ol [T Software Marual &
Output Bias: ID-D :I a4

Tuning Conzgtants

Propartional Gain [Kp): |1-':| j & E‘if: I;EZ&E;;?:QH
Entegral Gain [Ki): 01 :I - 1.-"3] gi‘?ﬂpﬂg{'ﬂgm the: PID
Derivative Time [F.d): ID-D e Fieset | €

Setpoint [SP: 100 P Alarm; Lo
Process \anable: 0.0 Dreviation Alarm; High
Error: 100 Outpuk Liriting: Hone
Cutput; 125533935 Eror ‘within Deadband: Mo

o

Tieback: 0.0 Setpoint Out of Range: Mo
bl ode; Ao PID Initialized: e

k. Cancel | Spply I Help

42) Observe what is happening to the CV%. Since we entered Ki as repeats per second, after 10
seconds, the proportional gain will be repeated, and you will have an output value of 20. After
20 seconds you will have an output value of 30. If the PV starts to increase, the error will
decrease, and the CV% will increase more slowly. Even if the PV is only 1% below the SP, the
CV% will still be increasing (although very slowly by this time) until the PV is equal to the SP.

43) Change your Reset Ki to 0 to remove the integral influence, then set Ki to .05. You will see the
Integral control is repeating the proportional gain every 20 seconds now which is half as fast.
Change your Ki to 0, then observe the value of the output when you set Ki to .2. The output
will increase much faster. If the value of Ki is set too high it could cause the system to become
unstable.

44) Now that you understand how integral control works, lets try this on your heating process.

ControlLogix Level 2 — Page #187

45) Go back to RSView, and for review, change your load to 0% and observe how the loop reacts.
Then change your load to 100% and observe how the loop reacts. Also notice that the steady
state process variable is well below the set point.

7 ; L— Steady State under No Load

Steady State (Loaded)

46) Now we are going to change the Ki variable. What was the natural period (in minutes) that you
recorded when the loop was unstable? A rule of thumb is that the Ti variable is
equal to the natural period. This will change (sometimes drastically) based on your application.
Ti is the rate in minutes per repeat. To convert Ti to Ki, use the following formula according to
Allen Bradley's Instruction Set Reference Manual.:

Kp =Kc (Kp is Proportional gain in independent mode, and Kc is Controller gain
dependent mode.)

Ki=Kc/60*Ti

What is your answer for Ki?

ControlLogix Level 2 — Page #188

47) Go to RSLogix, and look at the PID ROUTINE. Set the Ki value of the ONLINE PID

instruction. Immediately go back to RSView and observe what effect Integral control is having
on your system.

48) You can see that right away when Ki is added to the equation, the output increases sharply due
to the large error. The integral control continues to add output to the control variable at
increasing slower rates until the PV is driven up to achieve the Set point. Now change your
load between 0 and 100 percent to see how stable the loop is. You will see fluctuations
immediately, however, no matter what the load, the Set point is achieved and the loop becomes
stable within a reasonable period of time.

Mo Load Steady State

Irtegral Ti was sdded

' at this point
Loaded

Steady
State

ControlLogix Level 2 — Page #189

49) When removing the load, the PV may go out of range of the chart. The reason for that is that
for 100% load, the control variable required is very high. When the load is removed, and is no
longer removing heat from the system, the heat bands are still hot, and take some time to begin
to cool.

50) Similarly, when heating up the system, the heat bands are cold, and require some amount of
time to become hot enough to start adding heat to the system. For this example, the power
level the PID controller is wanting to achieve is called the requested power. The amount of
energy the heating bands are adding to the system is called the actual power. When there is a
change in requested power, it takes some time for the actual power to acheive the requested
power level.

7‘ ; L Steacly State under Mo Losd

Steady State (Loaded)

51) Now Compare these 2 graphs. To the left is a graph of how the system reacted with
proportional control only. Notice the steady state temperatures. The larger the load, the lower
the temperature of the system. Even at no load, due to ambient losses, the steady state
temperature was well below the set point.

52) Now that we have Ki added to our controller, you will see that we now achieve the SP.

Trensiion 10 0% Load Transition to 100% Load |

ControlLogix Level 2 — Page #190

Derivative Worksheet

53) The proportional and integral control work well in maintaining a desired temperature. The last
part of PID that we are going to discuss is the DERIVATIVE component. With derivative
action, the controller output is proportional to the rate of change of the measurement or error.
You do not always need derivative action, and on some processes, it should never be used.
Since derivative is based on the rate of change of error, if you have a noisy PV, large amounts
of gain can be generated causing the loop to become unstable. Derivative action on noisy
loops can cause the valve to become ‘jittery’ and decrease the life of the valve. An example
might be a flow process at a water treatment facility. The material flowing through the system
might have various degrees of viscosity causing intermittent large changes in the PV. If the
controller attempts to act on these changes, the loop could become unstable. Because of this
effect, derivative action usually causes more harm than good for flow control processes and
therefore should not be used.

54) Imagine a heating process. Derivative action can be useful on a heating process by
anticipating changes. If load is dramatically increased on a system, the PV is going to begin to
decrease rapidly. The proportional and integral gain are not going to start adding large
amounts of output to the CV until the error increases significantly. The derivative action will
immediately detect that the PV is rapidly decreasing, and start to generate output immediately.

55) The Instruction Set Reference Manual states that a good rule of thumb to use when setting the
derivative Kd, is one-eighth the value of Ki.

56) Because of the nature of the heating process, we have been using, Derivative action would not
be significantly noticed. We are going to use our OFFLINE PID instruction in the
PID ROUTINE to observe the effect of the derivative on a process.

=15 Tasks

-8 MainTask

Cﬂ; MainPrograr

=53 PID_TASK

. 258 PID_PROGRAM
E‘ Prograrn Tags
-.H# PID_ROUTINE

ControlLogix Level 2 — Page #191

57) Let’s go into the Setup Screen for our OFFLINE PID instruction, and configure the parameters

as follows:

PID Setup - OfflinePID x|

Tuning” I Canfiguration| Alamns | Sealing| Tag |

Setpoint [SF]:
Set Output;

COutput Bias:

Tuning Conhztants

f10.0 e
{10.0 Hex
IEI.EI ﬁ & 3

bl arual bodes
[T Manual &

[Software Manual &

Proportional Gain [Kp); I1 0 e

Integral G ain [Kil;

0.0 Hels

Rezet Tuning Congtants
to the values they had
upot entry inta the PID

Setup dialog

Derivative Time [Kdp |00 e Fesst £
Setpoint [SP): 10.0 P dlarm; Lo
Proceszs Yanable: 0.0 Dreviation Alarm: High
Errar: 10.0 Clutput Limniting: MHone
Cukput; 10.0 * Eror ‘within Deadband: Mo
Tieback: 0.0 i Setpoint Out of Range: Mo
tode: Auto PID Initialized: Tes

] I Cancel Apply Help

ControlLogix Level 2 — Page #192

58) In an actual process, a rule of thumb is that Td is 1/8" of the natural period of the unstable sine
wave you recorded earlier. Utilize the following formula to calculate the Kd from the Td
variable:

Kd=XKc * Td * 60

59) Since derivative gain is based on a rate of change, we are going to use a signal generator to
feed a ramping PV into our system. Go back to your RSView project, and open the display
called “noprocess”. This screen will allow you to control the ramping signal generator,
monitor the CV%, and change the Kd of the controller.

jrERssssssmssmamEm
]
0 i
L 1

Rate Td (/100)

. Not | | i

Active Actival ||Enabl ed%

Famp Famp " Enable 38

Up Down Ramping
Re=set

ControlLogix Level 2 — Page #193

60) Set your Rate Kd at 0. Enable your ramping action by clicking the enable button, and then start
your signal generator ramping up.

61) Watch your trending chart in RSView. You will see the PV (green line) at the bottom of your
chart. This PV might be representing a temperature. The red line represents your power
output. Since our Kc gain is set to 1, the CV is an exact mirror of the PV.

62) The chart below is what you observed with no derivative action. Notice that the output power
decreases proportionally as the PV increases. If the PV stops increasing and remains the same,
the Output power stops decreasing and remains the same as well.

g g e Ty

63) Next we are going to put some derivative into the process, so you can see its effect on the
output power. Before we do this, lets try to anticipate how the derivative action is going to
change the output power. Remember the derivative action attempts to resist change. As long
as our PV is changing, we are going to have some derivative action. If our PV stops changing,
then we are no longer going to have the derivative action. The derivative sees that our
temperature is increasing rapidly. Therefore, it will attempt to decrease the CV as long as this
fast rate of change exists. Similarly, if the derivative sees the temperature falling rapidly, it
will attempt to add output to the controller to compensate.

ControlLogix Level 2 — Page #194

64) To keep you from having to switch back to RSLogix, you have a numeric entry in RSView that
will allow you to change the Kd value. We are going to enter the value of 30 into RSView, and
this value will show up on the setup screen of the PID instruction as .3.

65) Press the RESET button in RSView, and then enable the ramping action. Start your PV
ramping up. Notice the way the Control Variable reacts. Immediately it is decreased because
of the rate of change of the PV. Now stop the ramping action. You will see the CV goes back
to the proportional value, and derivative action no longer exists.

ControlLogix Level 2 — Page #195

ControlLogix Level 2 — Page #196

Getting Started with Structured Text in RSLogix 5000

For complex algorithms, ladder logic can be too cumbersome and time consuming to program. A
higher level programming language can greatly simplify your calculations. Variables can be assigned,
and operated on, and loops can be used for multiple operations in the same scan.

With object oriented programming quickly becoming a standard, more programmers are beginning to
use structured text as the primary means of programming PLC's. Ladder logic is based on many of the
same concepts as Assembly Language. Higher level programming languages are available today
eliminating the need to program with ladder logic. When this happens, those who troubleshoot and
program PLC systems must be able to decipher a structured text routine.

To create a new structured text routine, right click on a program, and add a new routine as shown.

(=145 Tasks
EIL%_ MainTask

Name the routine, and specify the type as a Structured Text Routine.

New Routine I
Marne:
Descriptior: ;I Cancel |

Type:

Be sure to add a JSR statement to the MainRoutine so this subroutine will execute.

SR
Jump To Subrotine
Routine Mame WMyText

ControlLogix Level 2 — Page #197

If you aren't use to structured text, at first these examples will seem a bit cumbersome and hard to get
used to at first, but working with multiple addresses, and performing complex operations at once is
much easier and simpler.

The comment flags allow you to document the structured text program. (Note: // can be used to
comment a single line as well)

=l 51| ¢

111

== =(E) =+

[*Thi=s is My Structured Text Rnutind
*h

The IF conditional checks an expression. If the expression immediately following the IF statement
returns a 1, the operation after the THEN statement will be executed. If the expression returns a 0, the
operation after the ELSE statement will be executed.

In this example, if Switch 0 is ON, Light 0 will be turned on... If Switch 0 is off, light 0 will be shut
off.

(*This i=s My Structured Text Routine
*

If Local:E5:I.Daka.l then
Local:&:0_Data. 0 :
else
Local:&:0_Data. 0 :

n
=
.

n
o
Y

end if;

ControlLogix Level 2 — Page #198

Here is an example of a Timer On Delay with Reset:

S This iz a TOMNER (Tiwmer On Delay with Reset
BTHTimer. Pre := 1E5000;

BTHTimer. Reset = STHTimerPReset;

STHTimer. TimerEnahle := Localiwitch.3;

TONE (STHTimer) ;

tCimer state = ETXTimer_ DN;

if timer state then

BitiArrayPapalll] := 1:
elze

BichrrayPapal[ll] := 0;
end if;

if not Localiwitch.3 then

BTHTimerBeset = 1;
el=za

ETHTimerPeset = 0O;
end if;

STXTimer and STXTimerReset are declared in the tag database:

[STTimer) fo.at fo..} 1FE=D=TIMEFE]
—STxTimer Enableln 1 D ecimal BOOL
—ST#Timer. TimerE nable 1 D ecimal BOOL

[+-5T#Timer.PRE 15000 Drecimal DINT
— ST Timer. Reset 0 Decimal BOOL
—S T Timer. Enableut 1 D ecimnal BOOL

[+H-5T=TimerACC 15000 Decimal DIMT
—STxTimer EN 1 D ecimal BOOL
—STHTimer. TT 0 Decimal BOOL
— ST Timer.OM 1 Decimal BOOL

[#]-5T#Timer.Statuz lego0o0. .. Hew DIMT
—S T Timer InstructF ault n D ecimal BOOL
—STxTimer. Presetny n D ecimal BOOL

meseﬂ 0 Decimal EEIEII]

You can now download and test your work.

For more information on Structured text, please read AB document #1756-PM00].

ControlLogix Level 2 — Page #199

Hands On Troubleshooting

Your instructor will guide you through the following troubleshooting utilities:
Search/Find
Cross Reference
Trending

Extensive time will be provided for you to practice tracing down outputs, cross referencing through a
plant program, and learning which inputs are required to energize various outputs.

ControlLogix Level 2 — Page #200

Connecting to a Spreadsheet using DDE

Using a spreadsheet such as OpenOffice.org Calc, or Excel, you can create a DDE (Dynamic Data
Exchange) link through RSLinx. This can be useful to replace the custom data monitor feature that
existed in RSLogix 5 and 500. Using a spreadsheet has a few advantages over the custom data
monitor, such as the ability to perform calculations, create charts and graphs, multiple columns of data,
etc... This tutorial assumes you already have a running driver and are connected to the PLC using
professional version of RSLinx.

1) The first step in creating the link is to open RSLinx communication server.

2) Open the RSWho screen, and locate your processor. This can be a PLC-5, SLC-500,
ControlLogix, etc... The same procedure applies to each family of processors. For this
example, we will use the PLC-5

Q5 RSLink Gateway - [RSWho - 1]

=5 Fil= Edit Wiew Communications Station

3/(&) 18| |liz] 2|

3) Next, you will want to determine which driver your processor is under. For this example, I will
use the TCP Driver since I'm going through a gateway. You may use the Ethernet driver, or
DF1 driver as well. Expand the driver, and locate your processor. (Note: If you are
connecting to a ControlLogix system over Ethernet, you will need to expand the Ethernet
driver, drill through the Ethernet module, and across the backplane to find the processor.)

=11 workstation, JAMRUM
3'?3 Linx Gateways, Ethernet
&5 AE_DF1-1, DF1
-2 AB_ETH-1, Ethernet
-2 TCP-1, Data Highway Plus
- 00, ‘Warkstation, RSLinx
& [foz, PLC-S[15, ATTIC

§) 03, PLC-5)25, BASEMENT

ControlLogix Level 2 — Page #201

4) Once, you have found the processor, right click the processor and choose 'Configure new
DDE/OPC Topic'.

-5 TCP-1, Data Highway Plus
= 00, Workstation, RSLinx
7§02, PLC-S/15, ATTIC|RE-p—.
.. 03, PLC-5/25, BASEN

Station Diagnioskics

Configure Mew DDEJOPC Topic

5) Next, type the name of your topic. In this example, the topic will be named 'MyTopic', and the
processor I am pointing this topic to is already highlighted.

Topic List: | Data Source | C'ata Caollection I Advanced Communication I

FMuT opic v Autobrowss Fefresh I

== wworkstation, JAMRLM

F-E5 Linx Gateways, Ethernet

-5 AB_DF1-1, DF1

&5 AE_ETH-1, Ethernet

-2 TCP-1, Data Highway Plus
.m0, Warkstation, RSLin
oz, pLCS)1s, ATTIC
.. JT 03, PLC-5/25, BASEMENT

6) Click the 'Data Collection' Tab. Change the Poll rate to 100ms for this example to improve the
update time of our link. (Note: In most situations, you want to keep the poll time as slow as
possible to reduce load on the network.)

, Data Sn:-un:e' D ata Callection I.ﬁ.dvanced Cammurication |

Processor Type: I PLC-S j

[ata Caollection kMode

¥ Polled Meszages [mSec] |

[Unszolicited Messages

ControlLogix Level 2 — Page #202

7) Press 'Apply'.

Delete ‘ Apply II Daore Help

8) You will be asked to update the topic. Click 'Yes'.

Lo | Cancel |

9) Now click 'Done'. (Do not click Clone!)

Delete | Spply Help |

10) Next, open your spreadsheet program.

11) In a cell of your spreadsheet, enter the formula in the following format:

=RSLinx|MyTopic!'DataTableAddress'

12) The cell in your spreadsheet should now be displaying the value of the data table (or tag) that
you chose to view.

B1 - B =RSLinx|MyTopicl ™7 0"
A B c | oD | E |

ControlLogix Level 2 — Page #203

ControlLogix Level 2 — Page #204

Using DDE with Visual Basic 6

This tutorial assumes you already have a Topic set up in a professional version of RSLinx. If you have
not yet configured the topic, see the section titled 'Connecting to a Spreadsheet using DDE'. (I'm
also assuming VB6 is installed on your computer) For this example, we will create a simple program
that can view a memory location, and write to a memory location in the controller.

Acquiring Data from the processor

1) Open Microsoft Visual Basic 6.

2) Choose to create a standard executable file (standard exe)

Mew |E:-:isting| Hecentl

s 2= X

SIS Ackiver EXE Activer DLL

3) Click the texbox object from the general toolbox, and draw a textbox onto your form.

ControlLogix Level 2 — Page #205

4) On the Lower left side of your IDE, you will see a properties window. (If it is not there, turn it
on from the view menu. We will be setting the LinkTopic, LinkItem, and LinkMode as shown
for this example. RSLinx is the application we are going through to acquire the data, MyTopic
is the topic we created within RSLinx to point to the processor, and the LinkItem is the memory
location you wish to acquire data from for display in the textbox object. By putting the
LinkMode in automatic, the textbox will update at the intervals we specified under the data
collection tab in RSLinx.

Properties - Text1l *
|TE:-|:t1 TextBox ;I
Alphabetic |Categnrized |
Left 3600 N
LirikIterm (7.0

LinkMode 1 - Aukomatic

LinkTirmeaLk 50

LinkTopic (RS Lir: | My T opic

False J
0

(Mone)
MausePainter 0 - Defaulk
MulbiLine False ;I

6) To build this project as an executable, click File | Make Projectl.exe. You can then store the
executable on your desktop or any convenient location.

w5, Projectl - Microsoft Yisual

File Edit “ew Project Formak

&h Print... Chrl+P
| @ Frint setup. ..

Make Project1.exe. ..

ControlLogix Level 2 — Page #206

Sending data to the processor

In the last exercise, we acquired data from the processor. Occasionally, you may want to send data to
the processor. We will be using the same application, RSLinx, and the same topic within that
application for this exercise (MyTopic). We will change the preset of a timer such as T4:0.PRE. Since
the operator will be entering a value, we don't want to get that value automatically. (We don't know if
the operator has finished entering a value or not). We will want the operator to hit a button that sends
the value he entered to the processor.

1) Open VB6 as before.

2) This will be a standard executable

Mew |E:-:isting| Hecentl

s 2= X

SIS Ackiver EXE Activer DLL

3) Using the general toolbox, grab the textbox object, and draw the object on your form.

ControlLogix Level 2 — Page #207

7) On the Lower left side of your IDE, you will see a properties window. (If it is not there, turn it
on from the view menu. We will be setting the LinkTopic, LinkItem, and LinkMode as shown
for this example. RSLinx is the application we are going through to acquire the data, MyTopic
is the topic we created within RSLinx to point to the processor, and the LinkItem is the memory
location you wish to acquire data from for display in the textbox object. By putting the
LinkMode in manual this time, an event will be required to trigger the linkpoke command such
as a command_click event. (Be sure you are looking at the properties of the textbox)

Properties - Textl E3

ITEHI:I TextBox ;l
Alphabetic | Categarized I

LinkTimeouk 50

LinkTopic R.5Lim |y T opic

Locked False
MaxLengkh 1]
Mouseloon (Mone)

MousePointer |0 - Defaulk ;I

4) Next, grab a command button from the general toolbox. Draw the command button onto the
form.

ControlLogix Level 2 — Page #208

5) Double click on the command button to get to the code window. In the commandl _click event
(subroutine), type the following text:

Textl.LinkPoke

6) Textl is the name of the textbox. When you press the period, the intellisense will appear giving
you a list of options available for Textl. We chose the LinkPoke method because we want to
send whatever value is in text 1. When the command button is pressed, the code for the
command]_click event will execute, and the Textl.LinkPoke method will be executed. You
can test run your project to verify it's operation.

Cuery Diagram Tools Add-Ins Window Help

o () s MEEER

7) When finished, you can close the form you started, and build your project as we did before.

w5, Projectl - Microsoft Yisual

File Edit “ew Project Formak

&b print... Ctrl+P
| @ erint Setup...

Make Projectl.exe. ..

ControlLogix Level 2 — Page #209

ControlLogix Level 2 — Page #210

